Loading…

Accelerating mesh-based Monte Carlo method on modern CPU architectures

In this report, we discuss the use of contemporary ray-tracing techniques to accelerate 3D mesh-based Monte Carlo photon transport simulations. Single Instruction Multiple Data (SIMD) based computation and branch-less design are exploited to accelerate ray-tetrahedron intersection tests and yield a...

Full description

Saved in:
Bibliographic Details
Published in:Biomedical optics express 2012-12, Vol.3 (12), p.3223-3230
Main Authors: Fang, Qianqian, Kaeli, David R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this report, we discuss the use of contemporary ray-tracing techniques to accelerate 3D mesh-based Monte Carlo photon transport simulations. Single Instruction Multiple Data (SIMD) based computation and branch-less design are exploited to accelerate ray-tetrahedron intersection tests and yield a 2-fold speed-up for ray-tracing calculations on a multi-core CPU. As part of this work, we have also studied SIMD-accelerated random number generators and math functions. The combination of these techniques achieved an overall improvement of 22% in simulation speed as compared to using a non-SIMD implementation. We applied this new method to analyze a complex numerical phantom and both the phantom data and the improved code are available as open-source software at http://mcx.sourceforge.net/mmc/.
ISSN:2156-7085
2156-7085
DOI:10.1364/BOE.3.003223