Loading…

Femtosecond Ligand/Core Dynamics of Microwave-Assisted Synthesized Silicon Quantum Dots in Aqueous Solution

A microwave-assisted reaction has been developed to produce hydrogen-terminated silicon quantum dots (QDs). The Si QDs were passivated for water solubility via two different methods: hydrosilylation produced 3-aminopropenyl-terminated Si QDs, and a modified Stöber process produced silica-encapsulat...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2011-12, Vol.133 (51), p.20664-20667
Main Authors: Atkins, Tonya M, Thibert, Arthur, Larsen, Delmar S, Dey, Sanchita, Browning, Nigel D, Kauzlarich, Susan M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A microwave-assisted reaction has been developed to produce hydrogen-terminated silicon quantum dots (QDs). The Si QDs were passivated for water solubility via two different methods: hydrosilylation produced 3-aminopropenyl-terminated Si QDs, and a modified Stöber process produced silica-encapsulated Si QDs. Both methods produce water-soluble QDs with maximum emission at 414 nm, and after purification, the QDs exhibit intrinsic fluorescence quantum yield efficiencies of 15 and 23%, respectively. Even though the QDs have different surfaces, they exhibit nearly identical absorption and fluorescence spectra. Femtosecond transient absorption spectroscopy was used for temporal resolution of the photoexcited carrier dynamics between the QDs and ligand. The transient dynamics of the 3-aminopropenyl-terminated Si QDs is interpreted as a formation and decay of a charge-transfer (CT) excited state between the delocalized π electrons of the carbon linker and the Si core excitons. This CT state is stable for ∼4 ns before reverting back to a more stable, long-living species. The silica-encapsulated Si QDs show a simpler spectrum without CT dynamics.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja207344u