Loading…

Second-generation Annealed Highly Cross-linked Polyethylene Exhibits Low Wear

Background Compared with conventional polyethylene, first-generation highly cross-linked polyethylenes have low wear, but controversy exists regarding their reduced mechanical strength and/or retained free radicals. Second-generation highly cross-linked polyethylenes have been developed to reduce we...

Full description

Saved in:
Bibliographic Details
Published in:Clinical orthopaedics and related research 2012-06, Vol.470 (6), p.1696-1704
Main Authors: D’Antonio, James A., Capello, William N., Ramakrishnan, Rama
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Compared with conventional polyethylene, first-generation highly cross-linked polyethylenes have low wear, but controversy exists regarding their reduced mechanical strength and/or retained free radicals. Second-generation highly cross-linked polyethylenes have been developed to reduce wear, maintain mechanical strength, and have oxidative resistance, but it is unclear whether they do so. Questions/purposes The primary objective of this study therefore was to determine if a second-generation annealed material has low linear wear at 5 years followup. Secondary objectives were to evaluate for overall survivorship, implant fixation, osteolysis, and effect of socket inclination on wear. Methods In a multicenter prospective study, we radiographically evaluated 155 patients (167 hips) at 3 years, 124 patients (132 hips) at 4 years, and 46 patients (51 hips) at 5 years. The linear head penetration rate was measured at 6 weeks, 1 year, and yearly through 5 years. Results The head penetration per year after the first year of bedding-in was 0.024 mm per year at 3 years, 0.020 mm per year at 4 years, and 0.008 mm per year at 5 years. The average wear rate over 5 years was 0.015 mm per year and represents a 58% improvement over a first-generation annealed highly cross-linked polyethylene. The Kaplan-Meier survivorship (revision for any reason) was 97.8%. We revised no hip for bearing surface failure and observed no osteolysis. Socket inclination did not affect linear wear. Conclusions These data suggest the linear wear rate for a second-generation annealed highly cross-linked polyethylene is no greater than that for historic controls of first-generation highly cross-linked polyethylenes, and no untoward complications were encountered with this new material. Level of Evidence Level II, prognostic study. See the Guidelines for Authors for a complete description of levels of evidence.
ISSN:0009-921X
1528-1132
DOI:10.1007/s11999-011-2177-3