Loading…

DYRK2 priming phosphorylation of c-Jun and c-Myc modulates cell cycle progression in human cancer cells

Dysregulation of the G(1)/S transition in the cell cycle contributes to tumor development. The oncogenic transcription factors c-Jun and c-Myc are indispensable regulators at this transition, and their aberrant expression is associated with many malignancies. Degradation of c-Jun/c-Myc is a critical...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of clinical investigation 2012-03, Vol.122 (3), p.859-872
Main Authors: Taira, Naoe, Mimoto, Rei, Kurata, Morito, Yamaguchi, Tomoko, Kitagawa, Masanobu, Miki, Yoshio, Yoshida, Kiyotsugu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dysregulation of the G(1)/S transition in the cell cycle contributes to tumor development. The oncogenic transcription factors c-Jun and c-Myc are indispensable regulators at this transition, and their aberrant expression is associated with many malignancies. Degradation of c-Jun/c-Myc is a critical process for the G(1)/S transition, which is initiated upon phosphorylation by glycogen synthase kinase 3 β (GSK3β). However, a specific kinase or kinases responsible for priming phosphorylation events that precede this GSK3β modification has not been definitively identified. Here, we found that the dual-specificity tyrosine phosphorylation-regulated kinase DYRK2 functions as a priming kinase of c-Jun and c-Myc. Knockdown of DYRK2 in human cancer cells shortened the G(1) phase and accelerated cell proliferation due to escape of c-Jun and c-Myc from ubiquitination-mediated degradation. In concert with these results, silencing DYRK2 increased cell proliferation in human cancer cells, and this promotion was completely impeded by codeprivation of c-Jun or c-Myc in vivo. We also found marked attenuation of DYRK2 expression in multiple human tumor samples. Downregulation of DYRK2 correlated with high levels of unphosphorylated c-Jun and c-Myc and, importantly, with invasiveness of human breast cancers. These results reveal that DYRK2 regulates tumor progression through modulation of c-Jun and c-Myc.
ISSN:0021-9738
1558-8238
DOI:10.1172/jci60818