Loading…

Assessment of the Morphological, Biochemical, and Kinetic Properties for Candida rugosa Lipase Immobilized on Hydrous Niobium Oxide to Be Used in the Biodiesel Synthesis

Lipase from Candida rugosa (CRL) was immobilized by covalent attachment on hydrous niobium oxide. The matrix could effectively be attached to the enzyme with high retention of activity and prevent its leakage. Following immobilization, CRL exhibited improved storage stability and performed better at...

Full description

Saved in:
Bibliographic Details
Published in:Enzyme Research 2011, Vol.2011 (2011), p.1-10
Main Authors: Mendes, Adriano A., Urioste, Daniele, Andrade Souza, Livia T., de Castro, Heizir F., Miranda, Michele
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lipase from Candida rugosa (CRL) was immobilized by covalent attachment on hydrous niobium oxide. The matrix could effectively be attached to the enzyme with high retention of activity and prevent its leakage. Following immobilization, CRL exhibited improved storage stability and performed better at higher incubation temperatures. In addition, the enzyme retained most of its catalytic efficiency after successive operational cycles. The immobilized derivative was also fully characterized with respect to its morphological properties: particle size, surface specific area, and pore size distribution. Structural integrity and conformational changes, such as surface cavities in the support, set by the lipase procedure, were observed by Scanning Electron Microscopy. Additionally, a comparative study between free and immobilized lipases was provided in terms of pH, temperature, and thermal stability. CRL derivative was evaluated for the synthesis of biodiesel employing babassu oil and short chain alcohols. The process was feasible only for oil and butanol reaction system.
ISSN:2090-0414
2090-0406
2090-0414
DOI:10.4061/2011/216435