Loading…

A Technique for Simulating the Effect of Dose Reduction on Image Quality in Digital Chest Radiography

Purpose: The purpose of this study is to provide a pragmatic tool for studying the relationship between dose and image quality in clinical chest images. To achieve this, we developed a technique for simulating the effect of dose reduction on image quality of digital chest images. Materials and Metho...

Full description

Saved in:
Bibliographic Details
Published in:Journal of digital imaging 2009-04, Vol.22 (2), p.114-125
Main Authors: Veldkamp, Wouter J.H., Kroft, Lucia J.M., van Delft, Jan Pieter A., Geleijns, Jacob
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose: The purpose of this study is to provide a pragmatic tool for studying the relationship between dose and image quality in clinical chest images. To achieve this, we developed a technique for simulating the effect of dose reduction on image quality of digital chest images. Materials and Methods: The technique was developed for a digital charge-coupled-device (CCD) chest unit with slot-scan acquisition. Raw pixel values were scaled to a lower dose level, and a random number representing noise to each specific pixel value was added. After adding noise, raw images were post processed in the standard way. Validation was performed by comparing pixel standard deviation, as a measure of noise, in simulated images with images acquired at actual lower doses. To achieve this, a uniform test object and an anthropomorphic phantom were used. Additionally, noise power spectra of simulated and actual images were compared. Also, detectability of simulated lesions was investigated using a model observer. Results: The mean difference in noise values between simulated and real lower-dose phantom images was smaller than 5% for relevant clinical settings. Noise power spectra appeared to be comparable on average but simulated images showed slightly higher noise levels for higher spatial frequencies and slightly lower noise levels for lower spatial frequencies. Comparable detection performance was shown in simulated and actual images with slightly worse detectability for simulated lower dose images. Conclusion: We have developed and validated a method for simulating dose reduction. Our method seems an acceptable pragmatic tool for studying the relationship between dose and image quality.
ISSN:0897-1889
1618-727X
DOI:10.1007/s10278-008-9104-5