Loading…

Critical Role of Endothelial Notch1 Signaling in Postnatal Angiogenesis

Notch receptors are important mediators of cell fate during embryogenesis, but their role in adult physiology, particularly in postnatal angiogenesis, remains unknown. Of the Notch receptors, only Notch1 and Notch4 are expressed in vascular endothelial cells. Here we show that blood flow recovery an...

Full description

Saved in:
Bibliographic Details
Published in:Circulation research 2007-01, Vol.100 (1), p.70-78
Main Authors: Takeshita, Kyosuke, Satoh, Minoru, Ii, Masaaki, Silver, Marcy, Limbourg, Florian P, Mukai, Yasushi, Rikitake, Yoshiyuki, Radtke, Freddy, Gridley, Thomas, Losordo, Douglas W, Liao, James K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Notch receptors are important mediators of cell fate during embryogenesis, but their role in adult physiology, particularly in postnatal angiogenesis, remains unknown. Of the Notch receptors, only Notch1 and Notch4 are expressed in vascular endothelial cells. Here we show that blood flow recovery and postnatal neovascularization in response to hindlimb ischemia in haploinsufficient global or endothelial-specific Notch1 mice, but not Notch4 mice, were impaired compared with wild-type mice. The expression of vascular endothelial growth factor (VEGF) in response to ischemia was comparable between wild-type and Notch mutant mice, suggesting that Notch1 is downstream of VEGF signaling. Treatment of endothelial cells with VEGF increases presenilin proteolytic processing, γ-secretase activity, Notch1 cleavage, and Hes-1 (hairy enhancer of split homolog-1) expression, all of which were blocked by treating endothelial cells with inhibitors of phosphatidylinositol 3-kinase/protein kinase Akt or infecting endothelial cells with a dominant-negative Akt mutant. Indeed, inhibition of γ-secretase activity leads to decreased angiogenesis and inhibits VEGF-induced endothelial cell proliferation, migration, and survival. Overexpression of the active Notch1 intercellular domain rescued the inhibitory effects of γ-secretase inhibitors on VEGF-induced angiogenesis. These findings indicate that the phosphatidylinositol 3-kinase/Akt pathway mediates γ-secretase and Notch1 activation by VEGF and that Notch1 is critical for VEGF-induced postnatal angiogenesis. These results suggest that Notch1 may be a novel therapeutic target for improving angiogenic response and blood flow recovery in ischemic limbs.
ISSN:0009-7330
1524-4571
DOI:10.1161/01.RES.0000254788.47304.6e