Loading…

Phosphorylation of MDMX Mediated by Akt Leads to Stabilization and Induces 14-3-3 Binding

The critical tumor suppressor p53 is mutated or functionally inactivated in nearly all cancers. We have shown previously that the MDM2-MDMX complex functions as an integral unit in targeting p53 for degradation. Here we identify the small protein 14-3-3 as a binding partner of MDMX, which binds at t...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2008-05, Vol.283 (20), p.13707-13713
Main Authors: Lopez-Pajares, Vanessa, Kim, Mihee M., Yuan, Zhi-Min
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The critical tumor suppressor p53 is mutated or functionally inactivated in nearly all cancers. We have shown previously that the MDM2-MDMX complex functions as an integral unit in targeting p53 for degradation. Here we identify the small protein 14-3-3 as a binding partner of MDMX, which binds at the C terminus (Ser367) in a phosphorylation-dependent manner. Importantly, we demonstrate that the serine/threonine kinase Akt mediates phosphorylation of MDMX at Ser367. This phosphorylation leads to stabilization of MDMX and consequent stabilization of MDM2. Previous studies have shown that Akt phosphorylates and stabilizes MDM2. Our data suggest that stabilization of MDMX by Akt may be an alternative mechanism by which Akt up-regulates MDM2 protein levels and exerts its oncogenic effects on p53 in tumor cells.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M710030200