Loading…

Hepatocytes with extensive telomere deprotection and fusion remain viable and regenerate liver mass through endoreduplication

We report that mouse liver cells are highly resistant to extensive telomere dysfunction. In proliferating cells, telomere dysfunction results in chromosome end fusions, a DNA damage signal, and apoptosis or senescence. To determine the consequences of telomere dysfunction in noncycling cells, we use...

Full description

Saved in:
Bibliographic Details
Published in:Genes & development 2006-10, Vol.20 (19), p.2648-2653
Main Authors: Lazzerini Denchi, Eros, Celli, Giulia, de Lange, Titia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report that mouse liver cells are highly resistant to extensive telomere dysfunction. In proliferating cells, telomere dysfunction results in chromosome end fusions, a DNA damage signal, and apoptosis or senescence. To determine the consequences of telomere dysfunction in noncycling cells, we used conditional deletion of the telomeric protein TRF2 in hepatocytes. TRF2 loss resulted in telomeric accumulation of gamma-H2AX and frequent telomere fusions, indicating telomere deprotection. However, there was no induction of p53 or apoptosis, and liver function appeared unaffected. Furthermore, the loss of TRF2 did not compromise liver regeneration after partial hepatectomy. Remarkably, liver regeneration occurred without cell division involving endoreduplication and cell growth, thereby circumventing the chromosome segregation problems associated with telomere fusions. We conclude that nondividing hepatocytes can maintain and regenerate liver function despite substantial loss of telomere integrity.
ISSN:0890-9369
1549-5477
DOI:10.1101/gad.1453606