Loading…

Replication Origin of Mitochondrial DNA in Insects

The precise position of the replication origin (O(R)) of mtDNA was determined for insect species belonging to four different orders (four species of Drosophila, Bombyx mori, Triborium castaneum, and Locusta migratoria, which belong to Diptera, Lepidoptera, Coleoptera, and Orthoptera, respectively)....

Full description

Saved in:
Bibliographic Details
Published in:Genetics (Austin) 2005-12, Vol.171 (4), p.1695-1705
Main Authors: Saito, Shigeru, Tamura, Koichiro, Aotsuka, Tadashi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The precise position of the replication origin (O(R)) of mtDNA was determined for insect species belonging to four different orders (four species of Drosophila, Bombyx mori, Triborium castaneum, and Locusta migratoria, which belong to Diptera, Lepidoptera, Coleoptera, and Orthoptera, respectively). Since the free 5' ends of the DNA strands of mtDNA are interpreted as the O(R), their positions were mapped at 1-nucleotide resolution within the A + T-rich region by using the ligation-mediated PCR method. In all species examined, the free 5' ends were found within a very narrow range of several nucleotides in the A + T-rich region. For four species of Drosophila, B. mori, and T. castaneum, which belong to holometabolous insects, although the O(R)'s were located at different positions, they were located immediately downstream of a series of thymine nucleotides, the so-called T-stretch. These results strongly indicate that the T-stretch is involved in the recognition of the O(R) of mtDNA at least among holometabolous insects. For L. migratoria (hemimetabolous insect), on the other hand, none of the long stretches of T's was found in the upstream portion of the O(R), suggesting that the regulatory sequences involved in the replication initiation process have changed through insect evolution.
ISSN:0016-6731
1943-2631
1943-2631
DOI:10.1534/genetics.105.046243