Loading…

Cooperation between actin-binding proteins of invasive Salmonella: SipA potentiates SipC nucleation and bundling of actin

Pathogen‐induced remodelling of the host cell actin cytoskeleton drives internalization of invasive Salmonella by non‐phagocytic intestinal epithelial cells. Two Salmonella actin‐binding proteins are involved in internalization: SipC is essential for the process, while SipA enhances its efficiency....

Full description

Saved in:
Bibliographic Details
Published in:The EMBO journal 2001-05, Vol.20 (9), p.2131-2139
Main Authors: McGhie, Emma J., Hayward, Richard D., Koronakis, Vassilis
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pathogen‐induced remodelling of the host cell actin cytoskeleton drives internalization of invasive Salmonella by non‐phagocytic intestinal epithelial cells. Two Salmonella actin‐binding proteins are involved in internalization: SipC is essential for the process, while SipA enhances its efficiency. Using purified SipC and SipA proteins in in vitro assays of actin dynamics and F‐actin bundling, we demonstrate that SipA stimulates substantially SipC‐mediated nucleation of actin polymerization. SipA additionally enhances SipC‐ mediated F‐actin bundling, and SipC–SipA collaboration generates stable networks of F‐actin bundles. The data show that bacterial SipC and SipA cooperate to direct efficient modulation of actin dynamics, independently of host cell proteins. The ability of SipA to enhance SipC‐induced reorganization of the actin cytoskeleton in vivo was confirmed using semi‐ permeabilized cultured mammalian cells.
ISSN:0261-4189
1460-2075
1460-2075
DOI:10.1093/emboj/20.9.2131