Loading…

Investigation of the removal of diclofop methyl herbicide by peroxy electrocoagulation process and kinetic and cost analysis

Pesticides containing chlorine, which are released during agricultural activities, are chemical substances that mix with surface and underground waters and have toxic, carcinogenic, and mutagenic effects on the entire living ecosystem. Due to their chemically stable structure, conventional water and...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international 2024-04, Vol.31 (20), p.29294-29303
Main Authors: Erden, Büşra, Sınmaz, Gamze Katırcıoğlu, Tanattı, Nazire Pınar, Aksu, Meryem, Şengil, İsmail Ayhan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pesticides containing chlorine, which are released during agricultural activities, are chemical substances that mix with surface and underground waters and have toxic, carcinogenic, and mutagenic effects on the entire living ecosystem. Due to their chemically stable structure, conventional water and wastewater treatment techniques such as coagulation, flocculation, and biological oxidation do not entirely remove these chemical substances. Therefore, before releasing them into the environmental receptor, these chemical substances must be transformed into harmless products or mineralized through advanced oxidation processes. When we look at the literature, there are not many studies on methods of removing diclofop methyl from aquatic media. Our study on the removal of diclofop methyl herbicide from aquatic media using the peroxy electrocoagulation method will provide the first information on this subject in the literature. In addition, this treatment method will contribute significantly to filling an important gap in the literature as an innovative approach for diclofop methyl removal. Moreover, peroxy electrocoagulation, which produces less sludge, provides treatment in a short time, and is economical, has been determined to be an advantageous process. The effects of conductivity, pH, H 2 O 2 concentration, current, and time parameters on the removal of diclofop methyl were investigated using a GC–MS instrument. Kinetics, energy consumption, and cost calculations were also made. Under the optimum conditions determined (pH = 5, H 2 O 2  = 500 mg/L, NaCl = 0.75 g/L, current density = 2.66 mA/cm 2 ), the peroxydic electrocoagulation process resulted in a diclofop methyl removal efficiency of 79.2% after a 25-min reaction. When the experimental results were analyzed, it was found that the results fitted the pseudo-second-order kinetic model.
ISSN:1614-7499
0944-1344
1614-7499
DOI:10.1007/s11356-024-33163-7