Loading…

Excited States by Coupling Piris Natural Orbital Functionals with the Extended Random-Phase Approximation

In this work, we explore the use of Piris natural orbital functionals (PNOFs) to calculate excited-state energies by coupling their reconstructed second-order reduced density matrix with the extended random-phase approximation (ERPA). We have named the general method PNOF-ERPA, and specific approach...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical theory and computation 2024-03, Vol.20 (5), p.2140-2151
Main Authors: Lew-Yee, Juan Felipe Huan, Bonfil-Rivera, Iván Alejandro, Piris, Mario, M. del Campo, Jorge
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, we explore the use of Piris natural orbital functionals (PNOFs) to calculate excited-state energies by coupling their reconstructed second-order reduced density matrix with the extended random-phase approximation (ERPA). We have named the general method PNOF-ERPA, and specific approaches are referred to as PNOF-ERPA0, PNOF-ERPA1, and PNOF-ERPA2, according to the way the excitation operator is built. The implementation has been tested in the first excited states of H2, HeH+, LiH, Li2, and N2 showing good results compared to the configuration interaction (CI) method. As expected, an increase in accuracy is observed on going from ERPA0 to ERPA1 and ERPA2. We also studied the effect of electron correlation included by PNOF5, PNOF7, and the recently proposed global NOF (GNOF) on the predicted excited states. PNOF5 appears to be good and may even provide better results in very small systems, but including more electron correlation becomes important as the system size increases, where GNOF achieves better results. Overall, the extension of PNOF to excited states has been successful, making it a promising method for further applications.
ISSN:1549-9618
1549-9626
DOI:10.1021/acs.jctc.3c01194