Loading…

Watching Molecular Nanotubes Self-Assemble in Real Time

Molecular self-assembly is a fundamental process in nature that can be used to develop novel functional materials for medical and engineering applications. However, their complex mechanisms make the short-lived stages of self-assembly processes extremely hard to reveal. In this article, we track the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2023-10, Vol.145 (41), p.22494-22503
Main Authors: Manrho, Marìck, Krishnaswamy, Sundar Raj, Kriete, Björn, Patmanidis, Ilias, de Vries, Alex H., Marrink, Siewert J., Jansen, Thomas L. C., Knoester, Jasper, Pshenichnikov, Maxim S.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Molecular self-assembly is a fundamental process in nature that can be used to develop novel functional materials for medical and engineering applications. However, their complex mechanisms make the short-lived stages of self-assembly processes extremely hard to reveal. In this article, we track the self-assembly process of a benchmark system, double-walled molecular nanotubes, whose structure is similar to that found in biological and synthetic systems. We selectively dissolved the outer wall of the double-walled system and used the inner wall as a template for the self-reassembly of the outer wall. The reassembly kinetics were followed in real time using a combination of microfluidics, spectroscopy, cryogenic transmission electron microscopy, molecular dynamics simulations, and exciton modeling. We found that the outer wall self-assembles through a transient disordered patchwork structure: first, several patches of different orientations are formed, and only on a longer time scale will the patches interact with each other and assume their final preferred global orientation. The understanding of patch formation and patch reorientation marks a crucial step toward steering self-assembly processes and subsequent material engineering.
ISSN:0002-7863
1520-5126
1520-5126
DOI:10.1021/jacs.3c07103