Alternative splicing regulates adaptor protein binding, trafficking, and activity of the Vps10p domain receptor SorCS2 in neuronal development

The Vps10p domain receptor SorCS2 is crucial for the development and function of the nervous system and essential for brain-derived neurotrophic factor (BDNF)-induced changes in neuronal morphology and plasticity. SorCS2 regulates the subcellular trafficking of the BDNF signaling receptor TrkB as we...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2023-09, Vol.299 (9), p.105102-105102, Article 105102
Main Authors: Skeldal, Sune, Voss, Lasse Frank, Lende, Jonas, Pedersen, Sarah Broholt, Mølgaard, Simon, Kaas, Mathias, Demange, Perline, Bentsen, Andreas Høiberg, Fuglsang, Marie, Sander, Marie Rubin, Buttenschøn, Henriette, Gustafsen, Camilla, Madsen, Peder, Glerup, Simon
Format: Article
Language:eng
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10463258
title Alternative splicing regulates adaptor protein binding, trafficking, and activity of the Vps10p domain receptor SorCS2 in neuronal development
format Article
creator Skeldal, Sune
Voss, Lasse Frank
Lende, Jonas
Pedersen, Sarah Broholt
Mølgaard, Simon
Kaas, Mathias
Demange, Perline
Bentsen, Andreas Høiberg
Fuglsang, Marie
Sander, Marie Rubin
Buttenschøn, Henriette
Gustafsen, Camilla
Madsen, Peder
Glerup, Simon
subjects alternative splicing
BDNF
cellular stress
dynein
kinesin
receptor trafficking
SorCS2
ispartof The Journal of biological chemistry, 2023-09, Vol.299 (9), p.105102-105102, Article 105102
description The Vps10p domain receptor SorCS2 is crucial for the development and function of the nervous system and essential for brain-derived neurotrophic factor (BDNF)-induced changes in neuronal morphology and plasticity. SorCS2 regulates the subcellular trafficking of the BDNF signaling receptor TrkB as well as selected neurotransmitter receptors in a manner that is dependent on the SorCS2 intracellular domain (ICD). However, the cellular machinery and adaptor protein (AP) interactions that regulate receptor trafficking via the SorCS2 ICD are unknown. We here identify four splice variants of human SorCS2 differing in the insertion of an acidic cluster motif and/or a serine residue within the ICD. We show that each variant undergoes posttranslational proteolytic processing into a one- or two-chain receptor, giving rise to eight protein isoforms, the expression of which differs between neuronal and nonneuronal tissues and is affected by cellular stressors. We found that the only variants without the serine were able to rescue BDNF-induced branching of SorCS2 knockout hippocampal neurons, while variants without the acidic cluster showed increased interactions with clathrin-associated APs AP-1, AP-2, and AP-3. Using yeast two-hybrid screens, we further discovered that all variants bound dynein light chain Tctex-type 3; however, only variants with an acidic cluster motif bound kinesin light chain 1. Accordingly, splice variants showed markedly different trafficking properties and localized to different subcellular compartments. Taken together, our findings demonstrate the existence of eight functional SorCS2 isoforms with differential capacity for interactions with cytosolic ligands dynein light chain Tctex-type 3 and kinesin light chain 1, which potentially allows cell-type specific SorCS2 trafficking and BDNF signaling.
language eng
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS; ScienceDirect®; DOAJ Directory of Open Access Journals; PubMed Central
identifier ISSN: 0021-9258
fulltext fulltext
issn 0021-9258
1083-351X
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-05-25T21%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alternative%20splicing%20regulates%20adaptor%20protein%20binding,%20trafficking,%20and%20activity%20of%20the%20Vps10p%20domain%20receptor%20SorCS2%20in%20neuronal%20development&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Skeldal,%20Sune&rft.date=2023-09-01&rft.volume=299&rft.issue=9&rft.spage=105102&rft.epage=105102&rft.pages=105102-105102&rft.artnum=105102&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2023.105102&rft_dat=%3Cproquest_pubme%3E2854435331%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-6ed17c385ebadc05621d6e9b7c2320e92f4ab3f36da7fb3d4e8913b5f2dc85973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2854435331&rft_id=info:pmid/37507021
container_title The Journal of biological chemistry
container_volume 299
container_issue 9
container_start_page 105102
container_end_page 105102
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10463258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925823021300</els_id><sourcerecordid>2854435331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-6ed17c385ebadc05621d6e9b7c2320e92f4ab3f36da7fb3d4e8913b5f2dc85973</originalsourceid><addsrcrecordid>eNp9kctuFDEQRS0EIpPAB7BBXrKgBz_a_RALFI1IQIqURQCxs9x2eeKh225s90j5Cb45TiZEsIk3VrlunbLuRegNJWtKaPNht94Nes0I46UWlLBnaEVJxysu6M_naEUIo1XPRHeEjlPakXLqnr5ER7wVpC3NFfpzOmaIXmW3B5zm0WnntzjCdhlVhoSVUXMOEc8xZHAeD86boniPc1TWOv3rvlDeYKULw-UbHCzO14B_zImSGZswqTIXQcM96CrEzRXD5cnDEoNXIzawhzHME_j8Cr2wakzw-uE-Qd_PPn_bfKkuLs-_bk4vKl2TOlcNGNpq3gkYlNFENIyaBvqh1YwzAj2ztRq45Y1RrR24qaHrKR-EZUZ3om_5Cfp04M7LMIHRZXVUo5yjm1S8kUE5-X_Hu2u5DXtJSd3w4mghvHsgxPB7gZTl5JKGcVQewpIk60Rdc8E5LVJ6kOoYUopgH_dQIu-ClDtZgpR3QcpDkGXm7b8ffJz4m1wRfDwIoNi0dxBl0g68BuOK11ma4J7A3wKUyrIJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><isCDI>true</isCDI><recordtype>article</recordtype><pqid>2854435331</pqid></control><display><type>article</type><title>Alternative splicing regulates adaptor protein binding, trafficking, and activity of the Vps10p domain receptor SorCS2 in neuronal development</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><source>ScienceDirect®</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><creator>Skeldal, Sune ; Voss, Lasse Frank ; Lende, Jonas ; Pedersen, Sarah Broholt ; Mølgaard, Simon ; Kaas, Mathias ; Demange, Perline ; Bentsen, Andreas Høiberg ; Fuglsang, Marie ; Sander, Marie Rubin ; Buttenschøn, Henriette ; Gustafsen, Camilla ; Madsen, Peder ; Glerup, Simon</creator><creatorcontrib>Skeldal, Sune ; Voss, Lasse Frank ; Lende, Jonas ; Pedersen, Sarah Broholt ; Mølgaard, Simon ; Kaas, Mathias ; Demange, Perline ; Bentsen, Andreas Høiberg ; Fuglsang, Marie ; Sander, Marie Rubin ; Buttenschøn, Henriette ; Gustafsen, Camilla ; Madsen, Peder ; Glerup, Simon</creatorcontrib><description>The Vps10p domain receptor SorCS2 is crucial for the development and function of the nervous system and essential for brain-derived neurotrophic factor (BDNF)-induced changes in neuronal morphology and plasticity. SorCS2 regulates the subcellular trafficking of the BDNF signaling receptor TrkB as well as selected neurotransmitter receptors in a manner that is dependent on the SorCS2 intracellular domain (ICD). However, the cellular machinery and adaptor protein (AP) interactions that regulate receptor trafficking via the SorCS2 ICD are unknown. We here identify four splice variants of human SorCS2 differing in the insertion of an acidic cluster motif and/or a serine residue within the ICD. We show that each variant undergoes posttranslational proteolytic processing into a one- or two-chain receptor, giving rise to eight protein isoforms, the expression of which differs between neuronal and nonneuronal tissues and is affected by cellular stressors. We found that the only variants without the serine were able to rescue BDNF-induced branching of SorCS2 knockout hippocampal neurons, while variants without the acidic cluster showed increased interactions with clathrin-associated APs AP-1, AP-2, and AP-3. Using yeast two-hybrid screens, we further discovered that all variants bound dynein light chain Tctex-type 3; however, only variants with an acidic cluster motif bound kinesin light chain 1. Accordingly, splice variants showed markedly different trafficking properties and localized to different subcellular compartments. Taken together, our findings demonstrate the existence of eight functional SorCS2 isoforms with differential capacity for interactions with cytosolic ligands dynein light chain Tctex-type 3 and kinesin light chain 1, which potentially allows cell-type specific SorCS2 trafficking and BDNF signaling.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2023.105102</identifier><identifier>PMID: 37507021</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>alternative splicing ; BDNF ; cellular stress ; dynein ; kinesin ; receptor trafficking ; SorCS2</subject><ispartof>The Journal of biological chemistry, 2023-09, Vol.299 (9), p.105102-105102, Article 105102</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2023 The Authors 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c404t-6ed17c385ebadc05621d6e9b7c2320e92f4ab3f36da7fb3d4e8913b5f2dc85973</cites><orcidid>0000-0002-7061-8354 ; 0000-0003-0904-6753 ; 0000-0002-4122-4401 ; 0009-0009-3620-7680 ; 0000-0002-0504-2598</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10463258/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925823021300$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,734,787,791,871,892,3569,27985,27986,46162,54176,54178</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37507021$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Skeldal, Sune</creatorcontrib><creatorcontrib>Voss, Lasse Frank</creatorcontrib><creatorcontrib>Lende, Jonas</creatorcontrib><creatorcontrib>Pedersen, Sarah Broholt</creatorcontrib><creatorcontrib>Mølgaard, Simon</creatorcontrib><creatorcontrib>Kaas, Mathias</creatorcontrib><creatorcontrib>Demange, Perline</creatorcontrib><creatorcontrib>Bentsen, Andreas Høiberg</creatorcontrib><creatorcontrib>Fuglsang, Marie</creatorcontrib><creatorcontrib>Sander, Marie Rubin</creatorcontrib><creatorcontrib>Buttenschøn, Henriette</creatorcontrib><creatorcontrib>Gustafsen, Camilla</creatorcontrib><creatorcontrib>Madsen, Peder</creatorcontrib><creatorcontrib>Glerup, Simon</creatorcontrib><title>Alternative splicing regulates adaptor protein binding, trafficking, and activity of the Vps10p domain receptor SorCS2 in neuronal development</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The Vps10p domain receptor SorCS2 is crucial for the development and function of the nervous system and essential for brain-derived neurotrophic factor (BDNF)-induced changes in neuronal morphology and plasticity. SorCS2 regulates the subcellular trafficking of the BDNF signaling receptor TrkB as well as selected neurotransmitter receptors in a manner that is dependent on the SorCS2 intracellular domain (ICD). However, the cellular machinery and adaptor protein (AP) interactions that regulate receptor trafficking via the SorCS2 ICD are unknown. We here identify four splice variants of human SorCS2 differing in the insertion of an acidic cluster motif and/or a serine residue within the ICD. We show that each variant undergoes posttranslational proteolytic processing into a one- or two-chain receptor, giving rise to eight protein isoforms, the expression of which differs between neuronal and nonneuronal tissues and is affected by cellular stressors. We found that the only variants without the serine were able to rescue BDNF-induced branching of SorCS2 knockout hippocampal neurons, while variants without the acidic cluster showed increased interactions with clathrin-associated APs AP-1, AP-2, and AP-3. Using yeast two-hybrid screens, we further discovered that all variants bound dynein light chain Tctex-type 3; however, only variants with an acidic cluster motif bound kinesin light chain 1. Accordingly, splice variants showed markedly different trafficking properties and localized to different subcellular compartments. Taken together, our findings demonstrate the existence of eight functional SorCS2 isoforms with differential capacity for interactions with cytosolic ligands dynein light chain Tctex-type 3 and kinesin light chain 1, which potentially allows cell-type specific SorCS2 trafficking and BDNF signaling.</description><subject>alternative splicing</subject><subject>BDNF</subject><subject>cellular stress</subject><subject>dynein</subject><subject>kinesin</subject><subject>receptor trafficking</subject><subject>SorCS2</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kctuFDEQRS0EIpPAB7BBXrKgBz_a_RALFI1IQIqURQCxs9x2eeKh225s90j5Cb45TiZEsIk3VrlunbLuRegNJWtKaPNht94Nes0I46UWlLBnaEVJxysu6M_naEUIo1XPRHeEjlPakXLqnr5ER7wVpC3NFfpzOmaIXmW3B5zm0WnntzjCdhlVhoSVUXMOEc8xZHAeD86boniPc1TWOv3rvlDeYKULw-UbHCzO14B_zImSGZswqTIXQcM96CrEzRXD5cnDEoNXIzawhzHME_j8Cr2wakzw-uE-Qd_PPn_bfKkuLs-_bk4vKl2TOlcNGNpq3gkYlNFENIyaBvqh1YwzAj2ztRq45Y1RrR24qaHrKR-EZUZ3om_5Cfp04M7LMIHRZXVUo5yjm1S8kUE5-X_Hu2u5DXtJSd3w4mghvHsgxPB7gZTl5JKGcVQewpIk60Rdc8E5LVJ6kOoYUopgH_dQIu-ClDtZgpR3QcpDkGXm7b8ffJz4m1wRfDwIoNi0dxBl0g68BuOK11ma4J7A3wKUyrIJ</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Skeldal, Sune</creator><creator>Voss, Lasse Frank</creator><creator>Lende, Jonas</creator><creator>Pedersen, Sarah Broholt</creator><creator>Mølgaard, Simon</creator><creator>Kaas, Mathias</creator><creator>Demange, Perline</creator><creator>Bentsen, Andreas Høiberg</creator><creator>Fuglsang, Marie</creator><creator>Sander, Marie Rubin</creator><creator>Buttenschøn, Henriette</creator><creator>Gustafsen, Camilla</creator><creator>Madsen, Peder</creator><creator>Glerup, Simon</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7061-8354</orcidid><orcidid>https://orcid.org/0000-0003-0904-6753</orcidid><orcidid>https://orcid.org/0000-0002-4122-4401</orcidid><orcidid>https://orcid.org/0009-0009-3620-7680</orcidid><orcidid>https://orcid.org/0000-0002-0504-2598</orcidid></search><sort><creationdate>20230901</creationdate><title>Alternative splicing regulates adaptor protein binding, trafficking, and activity of the Vps10p domain receptor SorCS2 in neuronal development</title><author>Skeldal, Sune ; Voss, Lasse Frank ; Lende, Jonas ; Pedersen, Sarah Broholt ; Mølgaard, Simon ; Kaas, Mathias ; Demange, Perline ; Bentsen, Andreas Høiberg ; Fuglsang, Marie ; Sander, Marie Rubin ; Buttenschøn, Henriette ; Gustafsen, Camilla ; Madsen, Peder ; Glerup, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-6ed17c385ebadc05621d6e9b7c2320e92f4ab3f36da7fb3d4e8913b5f2dc85973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>alternative splicing</topic><topic>BDNF</topic><topic>cellular stress</topic><topic>dynein</topic><topic>kinesin</topic><topic>receptor trafficking</topic><topic>SorCS2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skeldal, Sune</creatorcontrib><creatorcontrib>Voss, Lasse Frank</creatorcontrib><creatorcontrib>Lende, Jonas</creatorcontrib><creatorcontrib>Pedersen, Sarah Broholt</creatorcontrib><creatorcontrib>Mølgaard, Simon</creatorcontrib><creatorcontrib>Kaas, Mathias</creatorcontrib><creatorcontrib>Demange, Perline</creatorcontrib><creatorcontrib>Bentsen, Andreas Høiberg</creatorcontrib><creatorcontrib>Fuglsang, Marie</creatorcontrib><creatorcontrib>Sander, Marie Rubin</creatorcontrib><creatorcontrib>Buttenschøn, Henriette</creatorcontrib><creatorcontrib>Gustafsen, Camilla</creatorcontrib><creatorcontrib>Madsen, Peder</creatorcontrib><creatorcontrib>Glerup, Simon</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skeldal, Sune</au><au>Voss, Lasse Frank</au><au>Lende, Jonas</au><au>Pedersen, Sarah Broholt</au><au>Mølgaard, Simon</au><au>Kaas, Mathias</au><au>Demange, Perline</au><au>Bentsen, Andreas Høiberg</au><au>Fuglsang, Marie</au><au>Sander, Marie Rubin</au><au>Buttenschøn, Henriette</au><au>Gustafsen, Camilla</au><au>Madsen, Peder</au><au>Glerup, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alternative splicing regulates adaptor protein binding, trafficking, and activity of the Vps10p domain receptor SorCS2 in neuronal development</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>299</volume><issue>9</issue><spage>105102</spage><epage>105102</epage><pages>105102-105102</pages><artnum>105102</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><notes>Joint senior authorship.</notes><abstract>The Vps10p domain receptor SorCS2 is crucial for the development and function of the nervous system and essential for brain-derived neurotrophic factor (BDNF)-induced changes in neuronal morphology and plasticity. SorCS2 regulates the subcellular trafficking of the BDNF signaling receptor TrkB as well as selected neurotransmitter receptors in a manner that is dependent on the SorCS2 intracellular domain (ICD). However, the cellular machinery and adaptor protein (AP) interactions that regulate receptor trafficking via the SorCS2 ICD are unknown. We here identify four splice variants of human SorCS2 differing in the insertion of an acidic cluster motif and/or a serine residue within the ICD. We show that each variant undergoes posttranslational proteolytic processing into a one- or two-chain receptor, giving rise to eight protein isoforms, the expression of which differs between neuronal and nonneuronal tissues and is affected by cellular stressors. We found that the only variants without the serine were able to rescue BDNF-induced branching of SorCS2 knockout hippocampal neurons, while variants without the acidic cluster showed increased interactions with clathrin-associated APs AP-1, AP-2, and AP-3. Using yeast two-hybrid screens, we further discovered that all variants bound dynein light chain Tctex-type 3; however, only variants with an acidic cluster motif bound kinesin light chain 1. Accordingly, splice variants showed markedly different trafficking properties and localized to different subcellular compartments. Taken together, our findings demonstrate the existence of eight functional SorCS2 isoforms with differential capacity for interactions with cytosolic ligands dynein light chain Tctex-type 3 and kinesin light chain 1, which potentially allows cell-type specific SorCS2 trafficking and BDNF signaling.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37507021</pmid><doi>10.1016/j.jbc.2023.105102</doi><orcidid>https://orcid.org/0000-0002-7061-8354</orcidid><orcidid>https://orcid.org/0000-0003-0904-6753</orcidid><orcidid>https://orcid.org/0000-0002-4122-4401</orcidid><orcidid>https://orcid.org/0009-0009-3620-7680</orcidid><orcidid>https://orcid.org/0000-0002-0504-2598</orcidid><oa>free_for_read</oa></addata></record>