Alternative splicing regulates adaptor protein binding, trafficking, and activity of the Vps10p domain receptor SorCS2 in neuronal development

The Vps10p domain receptor SorCS2 is crucial for the development and function of the nervous system and essential for brain-derived neurotrophic factor (BDNF)-induced changes in neuronal morphology and plasticity. SorCS2 regulates the subcellular trafficking of the BDNF signaling receptor TrkB as we...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2023-09, Vol.299 (9), p.105102-105102, Article 105102
Main Authors: Skeldal, Sune, Voss, Lasse Frank, Lende, Jonas, Pedersen, Sarah Broholt, Mølgaard, Simon, Kaas, Mathias, Demange, Perline, Bentsen, Andreas Høiberg, Fuglsang, Marie, Sander, Marie Rubin, Buttenschøn, Henriette, Gustafsen, Camilla, Madsen, Peder, Glerup, Simon
Format: Article
Language:eng
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Vps10p domain receptor SorCS2 is crucial for the development and function of the nervous system and essential for brain-derived neurotrophic factor (BDNF)-induced changes in neuronal morphology and plasticity. SorCS2 regulates the subcellular trafficking of the BDNF signaling receptor TrkB as well as selected neurotransmitter receptors in a manner that is dependent on the SorCS2 intracellular domain (ICD). However, the cellular machinery and adaptor protein (AP) interactions that regulate receptor trafficking via the SorCS2 ICD are unknown. We here identify four splice variants of human SorCS2 differing in the insertion of an acidic cluster motif and/or a serine residue within the ICD. We show that each variant undergoes posttranslational proteolytic processing into a one- or two-chain receptor, giving rise to eight protein isoforms, the expression of which differs between neuronal and nonneuronal tissues and is affected by cellular stressors. We found that the only variants without the serine were able to rescue BDNF-induced branching of SorCS2 knockout hippocampal neurons, while variants without the acidic cluster showed increased interactions with clathrin-associated APs AP-1, AP-2, and AP-3. Using yeast two-hybrid screens, we further discovered that all variants bound dynein light chain Tctex-type 3; however, only variants with an acidic cluster motif bound kinesin light chain 1. Accordingly, splice variants showed markedly different trafficking properties and localized to different subcellular compartments. Taken together, our findings demonstrate the existence of eight functional SorCS2 isoforms with differential capacity for interactions with cytosolic ligands dynein light chain Tctex-type 3 and kinesin light chain 1, which potentially allows cell-type specific SorCS2 trafficking and BDNF signaling.
ISSN:0021-9258
1083-351X