Loading…

Zeolite Supported Pt for Depolymerization of Polyethylene by Induction Heating

We demonstrate that for polyethylene depolymerization with induction heating (IH), using a bifunctional (Pt- or Pt–Sn-containing zeolite) hydrocracking catalyst, we can obtain high hydrocarbon product yields (up to 95 wt % in 2 h) at a relatively low surface temperature (375 °C) and with a tunable p...

Full description

Saved in:
Bibliographic Details
Published in:Industrial & engineering chemistry research 2023-06, Vol.62 (22), p.8635-8643
Main Authors: Whajah, Bernard, Heil, Joseph N., Roman, Cameron L., Dorman, James A., Dooley, Kerry M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We demonstrate that for polyethylene depolymerization with induction heating (IH), using a bifunctional (Pt- or Pt–Sn-containing zeolite) hydrocracking catalyst, we can obtain high hydrocarbon product yields (up to 95 wt % in 2 h) at a relatively low surface temperature (375 °C) and with a tunable product distribution ranging from light gas products to gasoline- to diesel-range hydrocarbons. Four zeolite types [MFI, LTL, CHA­(SSZ-13), and TON] were chosen as the supports due to their varying pore sizes and structures. These depolymerization results are obtained at atmospheric pressure and without the use of H2 and result in an alkane/alkene mixture with virtually no methane, aromatics, or coke formation. We also demonstrate how IH helps overcome diffusional resistances associated with conventional thermal heating and thereby shortens reaction times.
ISSN:0888-5885
1520-5045
DOI:10.1021/acs.iecr.2c04568