Loading…
Survival Modelling for Data From Combined Cohorts: Opening the Door to Meta Survival Analyses and Survival Analysis Using Electronic Health Records
Summary Non‐parametric estimation of the survival function using observed failure time data depends on the underlying data generating mechanism, including the ways in which the data may be censored and/or truncated. For data arising from a single source or collected from a single cohort, a wide rang...
Saved in:
Published in: | International statistical review 2023-04, Vol.91 (1), p.72-87 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Summary
Non‐parametric estimation of the survival function using observed failure time data depends on the underlying data generating mechanism, including the ways in which the data may be censored and/or truncated. For data arising from a single source or collected from a single cohort, a wide range of estimators have been proposed and compared in the literature. Often, however, it may be possible, and indeed advantageous, to combine and then analyse survival data that have been collected under different study designs. We review non‐parametric survival analysis for data obtained by combining the most common types of cohort. We have two main goals: (i) to clarify the differences in the model assumptions and (ii) to provide a single lens through which some of the proposed estimators may be viewed. Our discussion is relevant to the meta‐analysis of survival data obtained from different types of study, and to the modern era of electronic health records. |
---|---|
ISSN: | 0306-7734 1751-5823 |
DOI: | 10.1111/insr.12510 |