Loading…

Normal reproductive and macrophage function in Pem homeobox gene-deficient mice

Interaction between germ cells and the supporting somatic cells guides many of the differentiative processes of gametogenesis. The expression pattern of the Pem homeobox gene suggests that it may mediate specific inductive events in murine reproductive tissues. During gestation, Pem is expressed in...

Full description

Saved in:
Bibliographic Details
Published in:Developmental biology 1998-10, Vol.202 (2), p.196
Main Authors: Pitman, J L, Lin, T P, Kleeman, J E, Erickson, G F, MacLeod, C L
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Interaction between germ cells and the supporting somatic cells guides many of the differentiative processes of gametogenesis. The expression pattern of the Pem homeobox gene suggests that it may mediate specific inductive events in murine reproductive tissues. During gestation, Pem is expressed in migrating and early postmigratory primordial germ cells, as well as in all embryo-derived extraembryonic membranes. Pem expression ceases in the germline after Embryonic Day 14 in both sexes and then reappears postnatally in the supporting cells of the gonad. In mature mice, Pem is produced by testicular Sertoli cells during stages VI-VIII of spermatogenesis and transiently by ovarian granulosa cells lining periovulatory follicles. Despite this tightly regulated reproductive expression pattern, mice with a targeted mutation in Pem have normal fecundity, with no detectable alteration in extraembryonic testicular or ovarian development or function. We also show that Pem is expressed throughout embryonic and adult development in a subset of a tissue-specific class of macrophages, Kupffer cells, as well as in a localized fraction of cells in macrophage cell lines. Although the number of Pem-positive Kupffer cells increases in mice treated with lipopolysaccharide, loss of Pem does not detectably interfere with the cells' ability to induce iNOS expression, demonstrating this Kupffer cell function does not require Pem. No differences were observed between Pem-knockout mice in 129, C57BL6/J, or mixed genetic backgrounds. Together, these data show that Pem is dispensable for embryonic and postnatal development, gonadal function, and Kupffer cell activation, perhaps due to compensatory expression of a similar homeobox gene.
ISSN:0012-1606
1095-564X
DOI:10.1006/dbio.1998.8978