Loading…

Targeting PP2A-dependent autophagy enhances sensitivity to ruxolitinib in JAK2 V617F myeloproliferative neoplasms

The Janus kinase 2 (JAK2)-driven myeloproliferative neoplasms (MPNs) are chronic malignancies associated with high-risk complications and suboptimal responses to JAK inhibitors such as ruxolitinib. A better understanding of cellular changes induced by ruxolitinib is required to develop new combinato...

Full description

Saved in:
Bibliographic Details
Published in:Blood cancer journal (New York) 2023-07, Vol.13 (1), p.106
Main Authors: Courdy, Charly, Platteeuw, Loïc, Ducau, Charlotte, De Araujo, Isabelle, Boet, Emeline, Sahal, Ambrine, Saland, Estelle, Edmond, Valérie, Tavitian, Suzanne, Bertoli, Sarah, Cougoul, Pierre, Granat, Fanny, Poillet, Laura, Marty, Caroline, Plo, Isabelle, Sarry, Jean-Emmanuel, Manenti, Stéphane, Mansat-De Mas, Véronique, Joffre, Carine
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Janus kinase 2 (JAK2)-driven myeloproliferative neoplasms (MPNs) are chronic malignancies associated with high-risk complications and suboptimal responses to JAK inhibitors such as ruxolitinib. A better understanding of cellular changes induced by ruxolitinib is required to develop new combinatory therapies to improve treatment efficacy. Here, we demonstrate that ruxolitinib induced autophagy in JAK2 cell lines and primary MPN patient cells through the activation of protein phosphatase 2A (PP2A). Inhibition of autophagy or PP2A activity along with ruxolitinib treatment reduced proliferation and increased the death of JAK2 cells. Accordingly, proliferation and clonogenic potential of JAK2 -driven primary MPN patient cells, but not of normal hematopoietic cells, were markedly impaired by ruxolitinib treatment with autophagy or PP2A inhibitor. Finally, preventing ruxolitinib-induced autophagy with a novel potent autophagy inhibitor Lys05 improved leukemia burden reduction and significantly prolonged the mice's overall survival compared with ruxolitinib alone. This study demonstrates that PP2A-dependent autophagy mediated by JAK2 activity inhibition contributes to resistance to ruxolitinib. Altogether, our data support that targeting autophagy or its identified regulator PP2A could enhance sensitivity to ruxolitinib of JAK2 MPN cells and improve MPN patient care.
ISSN:2044-5385