Loading…

Preparation, characterization, in vivo and biochemical evaluation of brain targeted Piperine solid lipid nanoparticles in an experimentally induced Alzheimer's disease model

Background: Alzheimer is a fast growing disease with imprecise chemical treatments. Increased oxidative stress, decrease in acetylcholine concentration, and appearance of amyloidal proteins are reported in pathology of Alzheimer. Chemical drugs are effective but on the cost of detrimental side effec...

Full description

Saved in:
Bibliographic Details
Published in:Journal of drug targeting 2013-04, Vol.21 (3), p.300-311
Main Authors: Yusuf, Mohammad, Khan, Maria, Khan, Riaz A., Ahmed, Bahar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: Alzheimer is a fast growing disease with imprecise chemical treatments. Increased oxidative stress, decrease in acetylcholine concentration, and appearance of amyloidal proteins are reported in pathology of Alzheimer. Chemical drugs are effective but on the cost of detrimental side effects. Purpose: Present research is based on Preparation, characterization, behavioral and biochemical evaluation of brain targeted Piperine solid lipid nanoparticles in an experimentally induced Alzheimer's model at a low dose of 2 mg/kg. Methods: Piperine solid lipid nanoparticles were prepared by Emulsification-Solvent Diffusion technique with polysorbate-80 coating to impart Brain specific targeting. Experimental Ibotenic acid induced Alzheimer's, Force swimming test, superoxide dismutase, acetylcholenesterase enzymatic assays and also Histopathology of brain cortex was conducted to evaluate the Piperine therapeutic effects in Alzheimer's Disease. Results: Piperine in solid lipid nanoformulation (2 mg/kg equivalent) reduced the SOD values by 504 ± 44.24 m units, p < 0.05, increased the acetylcholenesterase values by 29.24 ± 4.29 µg/mg, p < 0.01 and reduced immobility to 41.36 ± 3.53 s, p < 0.001 and has shown superior results than Donepezil (5 mg/kg). Histopathology studies revealed the reduced plaques and tangles. Conclusions: P-80-PIP-SLN has shown therapeutic effects in Alzheimer via reducing the oxidative stress and reducing the cholinergic degradation at 2 mg/kg dose equivalent.
ISSN:1061-186X
1029-2330
DOI:10.3109/1061186X.2012.747529