Loading…

Physical characterization of a high-resolution CCD detector for mammography

The physical characteristics of charge-coupled device (CCD) mammography detector with 16-bit dynamic range and 27 microm detector element size were investigated. The detector, with an active area of 1 cm x 20 cm is suitable for slot-scanning systems. We evaluated the detector resolution by measuring...

Full description

Saved in:
Bibliographic Details
Published in:Physics in medicine & biology 2007-04, Vol.52 (8), p.2171-2183, Article 2171
Main Authors: Elbakri, I A, Tesic, M M, Xiong, Quanren
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The physical characteristics of charge-coupled device (CCD) mammography detector with 16-bit dynamic range and 27 microm detector element size were investigated. The detector, with an active area of 1 cm x 20 cm is suitable for slot-scanning systems. We evaluated the detector resolution by measuring the modulation transfer function (MTF) using a tilted edge. We also measured the noise power spectra (NPS) and detective quantum efficiency (DQE) using tungsten spectra filtered with 3 mm Al. We carried out measurements in two modes of operation: the frame mode where the detector is stationary and the scan mode where the detector operates in a slot-scanning configuration. The specific beam qualities and exposure ranges employed were 30 kVp, HVL 1.4 mm Al, 1.24 microC kg(-1) to 12.44 microC kg(-1), and 40 kVp, HVL 2.1 mm Al and 3.26 microC kg(-1) to 16.64 microC kg(-1). The product of the normalized noise power spectrum and exposure was also computed to evaluate the quantum limited characteristic of the detector. The detector MTF was 12% at 15 lp mm(-1). The product of the noise power spectra and exposure was independent of exposure level, indicating a quantum limited detector. The DQE in the scan and frame modes near zero frequency was 40% and 60%, respectively. Our results show that the slot-scanning configuration was less efficient than the performance capabilities of the detector. This detector is comparable to other digital mammography sensors evaluated in the literature.
ISSN:0031-9155
1361-6560
DOI:10.1088/0031-9155/52/8/009