Loading…

Cell-Surface Expression of a Mutated Epstein-Barr Virus Glycoprotein B Allows Fusion Independent of Other Viral Proteins

Epstein-Barr virus (EBV) infects human B lymphocytes and epithelial cells. We have compared the requirements for EBV glycoprotein-induced cell fusion between Chinese hamster ovary effecter cells and human B lymphoblasts or epithelial cells by using a virus-free cell fusion assay. EBV-encoded gB, gH,...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2004-12, Vol.101 (50), p.17474-17479
Main Authors: McShane, Marisa P., Longnecker, Richard, Kieff, Elliott D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Epstein-Barr virus (EBV) infects human B lymphocytes and epithelial cells. We have compared the requirements for EBV glycoprotein-induced cell fusion between Chinese hamster ovary effecter cells and human B lymphoblasts or epithelial cells by using a virus-free cell fusion assay. EBV-encoded gB, gH, gL, and gp42 glycoproteins were required for efficient B cell fusion, whereas EBV gB, gH, and gL glycoproteins were required for Chinese hamster ovary effecter cell fusion with epithelial cell lines (AGS and SCC68) or the human embryonic kidney cell line 293-P. Fusion with human embryonic kidney 293-P cells was greater than fusion observed with B cells, indicative of an important role for cell contact. An antibody directed against the gH and gL complex inhibited epithelial cell fusion. Increased surface expression of gB alone as a result of truncations or point mutants in the carboxyl-terminal tail allowed gB-mediated fusion with epithelial cells, albeit at a lower level than with coexpression of gB, gH, and gL. Overall, gB appears to be the critical component for EBV glycoprotein-mediated cell fusion.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0404535101