Loading…

Study on the fluid/structure interaction at different inlet pressures in molded packaging

This paper presents the computational study of fluid/structure interaction (FSI) analysis in the molding process using the Mesh-based parallel Code Coupling Interface (MpCCI) method with finite volume coding (FLUENT 6.3) and finite element coding (ABAQUS 6.9). The FSI analysis is implemented on the...

Full description

Saved in:
Bibliographic Details
Published in:Microelectronic engineering 2011-10, Vol.88 (10), p.3182-3194
Main Authors: Khor, C.Y., Abdullah, M.Z., Che Ani, F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents the computational study of fluid/structure interaction (FSI) analysis in the molding process using the Mesh-based parallel Code Coupling Interface (MpCCI) method with finite volume coding (FLUENT 6.3) and finite element coding (ABAQUS 6.9). The FSI analysis is implemented on the molded package during the encapsulation process with different inlet pressures. Real-time flow visualization, deformation and stress of the silicon die during the encapsulation process are presented in this paper. A fluctuation phenomenon of the silicon die is found in the encapsulation process when the inlet pressure increases. The maximum deformation during the process is determined at different locations on the silicon die, calculated during the final stage of the filling process. The deformation and stress of the die is exponentially increased with increasing inlet pressure. The maximum stress on the solder bump is concentrated near to the inlet gate. Thus, the present FSI analysis approach is expected to be a guideline or reference and provides better understanding of the encapsulation process for package design in the microelectronic industry.
ISSN:0167-9317
1873-5568
DOI:10.1016/j.mee.2011.06.026