Loading…

Synthesis, characterization and cytotoxicity of photo-crosslinked maleic chitosan–polyethylene glycol diacrylate hybrid hydrogels

Synthetic hydrogels are important biomaterials for many biomedical applications and hydrogels produced via photo-gelation have shown particular promise. In this paper, we describe a new family of biodegradable hybrid hydrogels fabricated in aqueous solution via long wavelength UV photo-crosslinking...

Full description

Saved in:
Bibliographic Details
Published in:Acta biomaterialia 2010-10, Vol.6 (10), p.3908-3918
Main Authors: Zhong, Chao, Wu, Jun, Reinhart-King, C.A., Chu, C.C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Synthetic hydrogels are important biomaterials for many biomedical applications and hydrogels produced via photo-gelation have shown particular promise. In this paper, we describe a new family of biodegradable hybrid hydrogels fabricated in aqueous solution via long wavelength UV photo-crosslinking using maleic chitosan and polyethylene glycol diacrylate (PEGDA) as precursors. The maleic chitosan precursor was prepared by a simple one-step chemical modification of chitosan, with high yields, and characterized by Fourier transform infrared spectroscopy, 1H NMR and 13C NMR. Maleic chitosan and PEGDA precursors at a wide range of weight feed ratios were mixed in aqueous solution and directly photo-crosslinked for 10 min under a long wavelength UV light (365 nm) using 4-(2-hydroxyethoxy) phenyl-(2-hydroxy-2-propyl) ketone (Irgacure 2959) as photoinitiator. It was observed that as the weight feed ratio of maleic chitosan to PEGDA decreased the pore sizes of the hydrogel samples decreased, thereby increasing the densities of the hydrogel networks and producing a lower swelling ratio and a higher compressive modulus. The molecular weight of PEGDA had a similar effect. Preliminary cell cytotoxicity tests of both the maleic chitosan precursor and maleic chitosan/PEGDA hydrogels, based on the MTT assay and live–dead assay, respectively, showed that these new chitosan-based biodegradable biomaterials were relatively non-toxic to bovine aortic endothelial cells at low dosages.
ISSN:1742-7061
1878-7568
DOI:10.1016/j.actbio.2010.04.011