Loading…

Method of thermoluminescent measurement of radiation doses from micrograys up to a megagray with a single LiF:Mg,Cu,P detector

On the basis of the newly discovered behaviour of LiF:Mg,Cu,P detectors at high and ultra-high doses, a new method of thermoluminescence (TL) measurement of radiation doses ranging from micrograys up to a megagray, has been recently developed at the Institute of Nuclear Physics (IFJ). The method is...

Full description

Saved in:
Bibliographic Details
Published in:Radiation protection dosimetry 2011-03, Vol.144 (1-4), p.543-547
Main Authors: Obryk, Barbara, Bilski, Pawel, Olko, Pawel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:On the basis of the newly discovered behaviour of LiF:Mg,Cu,P detectors at high and ultra-high doses, a new method of thermoluminescence (TL) measurement of radiation doses ranging from micrograys up to a megagray, has been recently developed at the Institute of Nuclear Physics (IFJ). The method is based on the relationship between the TL signal, integrated in the given temperature range and dose. It is quantified by a parameter called the 'ultra-high temperature ratio'. It has been demonstrated that this new method can measure radiation doses in the range of about 1 µGy to 1 MGy, using a single LiF:Mg,Cu,P detector. This method was recently successfully blindly tested for 10 MeV electrons up to doses of 200 kGy. It can be used for dosimetry in high-energy accelerators, especially in the Large Hadron Collider at CERN, and has great potential for accident dosimetry in particular.
ISSN:0144-8420
1742-3406
DOI:10.1093/rpd/ncq339