Loading…
Immunoisolating semi-permeable membranes for cell encapsulation: Focus on hydrogels
Cell-based medicine has recently emerged as a promising cure for patients suffering from various diseases and disorders that cannot be cured/treated using technologies currently available. Encapsulation within semi-permeable membranes offers transplanted cell protection from the surrounding host env...
Saved in:
Published in: | Journal of controlled release 2011-09, Vol.154 (2), p.110-122 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cell-based medicine has recently emerged as a promising cure for patients suffering from various diseases and disorders that cannot be cured/treated using technologies currently available. Encapsulation within semi-permeable membranes offers transplanted cell protection from the surrounding host environment to achieve successful therapeutic function following
in vivo implantation. Apart from the immunoisolation requirements, the encapsulating material must allow for cell survival and differentiation while maintaining its physico-mechanical properties throughout the required implantation period. Here we review the progress made in the development of cell encapsulation technologies from the mass transport side, highlighting the essential requirements of materials comprising immunoisolating membranes. The review will focus on hydrogels, the most common polymers used in cell encapsulation, and discuss the advantages of these materials and the challenges faced in the modification of their immunoisolating and permeability characteristics in order to optimize their function.
[Display omitted] |
---|---|
ISSN: | 0168-3659 1873-4995 |
DOI: | 10.1016/j.jconrel.2011.04.022 |