Loading…

Applications of planar anisotropic yield criteria to porous sheet metal forming simulations

Planar anisotropic yield functions, with rounded vertexes especially near the equal-biaxial direction of the corresponding yield loci, appropriate for some structure metals are employed for the matrix surrounding voids in the present study. The widely adopted Hill anisotropic yield functions are als...

Full description

Saved in:
Bibliographic Details
Published in:European journal of mechanics, A, Solids A, Solids, 2009-07, Vol.28 (4), p.806-810
Main Author: Liao, K.-C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Planar anisotropic yield functions, with rounded vertexes especially near the equal-biaxial direction of the corresponding yield loci, appropriate for some structure metals are employed for the matrix surrounding voids in the present study. The widely adopted Hill anisotropic yield functions are also implemented into the matrix for comparisons. Mechanisms of the void growth, void nucleation, and void coalescence are simultaneously considered here. Effects of the yield function of the corresponding matrix on the sheet metal under two typical sheet forming operations, a hemispherical punch stretching operation and a cup drawing operation, are investigated via a finite element analysis. Thickness strains in various orientations of the sheet are then evaluated. Simulation results show that the yield function of the corresponding matrix plays important roles on the strain distribution and the strain localization as well. Early localization would be found for the sheet with relatively small initial void volume fraction in two operations. Yield functions of the matrix rather influence the earing phenomenon under the cup drawing procedure even similar displacement profiles of the outer boundary could be observed.
ISSN:0997-7538
1873-7285
DOI:10.1016/j.euromechsol.2008.12.005