Loading…

Volatile Organic Compounds in Small- and Medium-Sized Commercial Buildings in California

While small- and medium-sized commercial buildings (SMCBs) make up 96% of the commercial buildings in the U.S., serving a large variety of uses, little information is available on indoor air quality (IAQ) in SMCBs. This study investigated 37 SMCBs distributed across different sizes, ages, uses, and...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2011-10, Vol.45 (20), p.9075-9083
Main Authors: Wu, Xiangmei (May), Apte, Michael G, Maddalena, Randy, Bennett, Deborah H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:While small- and medium-sized commercial buildings (SMCBs) make up 96% of the commercial buildings in the U.S., serving a large variety of uses, little information is available on indoor air quality (IAQ) in SMCBs. This study investigated 37 SMCBs distributed across different sizes, ages, uses, and regions of California. We report indoor concentrations and whole building emission rates of a suite of 30 VOCs and aldehydes in these buildings. There was a considerable range in the concentrations for each of the contaminants, especially for formaldehyde, acetaldehyde, decamethylcyclopentasiloxane, d-limonene, 2-butoxyethanol, toluene, 2,2,4-trimethylpentanediol diisobutyrate, and diethylphthalate. The cause of higher concentrations in some building categories generally corresponded to expected sources, for example, chloroform was higher in restaurants and grocery stores, and formaldehyde was higher in retail stores and offices. Factor analysis suggests sources in SMCBs include automobile/traffic, cleaning products, occupant sources, wood products/coating, and plasticizers. The comparison to health guidelines showed that formaldehyde concentrations were above the chronic RELs required by the OEHHA (9 μg/m3) in 86% of the buildings. Data collected in this study begins to fill the knowledge gap for IAQ in SMCBs and helps us understand the indoor sources of VOCs to further improve indoor air quality in SMCBs.
ISSN:0013-936X
1520-5851
DOI:10.1021/es202132u