Loading…

Supercontinuum generation in photonic crystal fibers with a normal dispersion pump pulse near the zero-dispersion wavelength

The onset of supercontinuum generation in a photonic crystal fiber (PCF) is investigated experimentally and numerically as a function of pump optical power with a femtosecond pulse. The pump pulse wavelength is positioned in the normal-dispersion regime close to the zero-dispersion wavelength (ZDW)...

Full description

Saved in:
Bibliographic Details
Published in:Optical Engineering 2008-07, Vol.47 (7), p.075005-075006
Main Authors: Zhang, Shumin, Yang, Xiufeng, Lu, Fuyun, Gong, Yandong, Meng, Xiulan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The onset of supercontinuum generation in a photonic crystal fiber (PCF) is investigated experimentally and numerically as a function of pump optical power with a femtosecond pulse. The pump pulse wavelength is positioned in the normal-dispersion regime close to the zero-dispersion wavelength (ZDW) of the PCF. When the pump power is low, the self phase modulation (SPM) is the dominant nonlinear process. With the increasing pump power, the primary mechanism of spectral broadening is identified as the combined action of stimulated Raman scattering (SRS) and parametric four-wave mixing (FWM). In the experiment, we have also observed the anti-Stokes Raman component, which reveals the importance of the fact that the pump pulses are positioned near the ZDW. Third-order dispersion (TOD) and Raman self frequency shift (RSS) also contribute to the supercontinuum generation. Good agreement between experiment and simulation is obtained.
ISSN:0091-3286
1560-2303
DOI:10.1117/1.2956387