Investigation into mountain pine beetle above-canopy dispersion using weather radar and an atmospheric dispersion model

Above-canopy, wind-assisted mountain pine beetle (MPB) dispersion in British Columbia (BC) is examined during the summer 2005 beetle emergence period. Above-canopy dispersion is simulated by the HYSPLIT atmospheric dispersion model using back trajectories started from locations identified by clear-a...

Full description

Saved in:
Bibliographic Details
Published in:Aerobiologia 2011-03, Vol.27 (1), p.51-65
Main Authors: Ainslie, Bruce, Jackson, Peter L
Format: Article
Language:eng
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Above-canopy, wind-assisted mountain pine beetle (MPB) dispersion in British Columbia (BC) is examined during the summer 2005 beetle emergence period. Above-canopy dispersion is simulated by the HYSPLIT atmospheric dispersion model using back trajectories started from locations identified by clear-air returns from the Prince George BC weather radar station. The dispersion calculations are carried out over the 10 days showing the highest intensity of clear-air returns from the 2005 emergence season. The Weather Research and Forecast (WRF) model is used to simulate the meteorological conditions during each of the 10 emergence days. Cumulative clear-air returns throughout each emergence day are used to estimate the distribution of beetle emergence times and atmospheric residence times. Evaluation of the WRF model output is presented using both surface and upper air observations. Evaluation of the HYSPLIT model is performed through a comparison of the vertical distribution of MPB observed in a previous study. A secondary HYSPLIT evaluation is performed using aerial surveys taken during the following summer (2006), which identify the previous years' beetle-infested regions. Beetle flight distances from the time of beetle emergence to the time of peak clear-air returns are calculated for each trajectory, and the distribution of all flight distances is presented. The mean back trajectory distance is 20.2 km with a standard deviation of 13.6 km. These values represent the MPB flight distance during half of the beetle atmospheric residence time, and typical daily wind-assisted dispersion distances would be expected to be roughly double this value. Mean beetle residence time in the atmosphere over the 10 emergence events is found to be 3.2 h.
ISSN:0393-5965
1573-3025