Loading…

Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium–Sulfur Battery Cathode Material with High Capacity and Cycling Stability

We report the synthesis of a graphene–sulfur composite material by wrapping poly(ethylene glycol) (PEG) coated submicrometer sulfur particles with mildly oxidized graphene oxide sheets decorated by carbon black nanoparticles. The PEG and graphene coating layers are important to accommodating volume...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2011-07, Vol.11 (7), p.2644-2647
Main Authors: Wang, Hailiang, Yang, Yuan, Liang, Yongye, Robinson, Joshua Tucker, Li, Yanguang, Jackson, Ariel, Cui, Yi, Dai, Hongjie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report the synthesis of a graphene–sulfur composite material by wrapping poly(ethylene glycol) (PEG) coated submicrometer sulfur particles with mildly oxidized graphene oxide sheets decorated by carbon black nanoparticles. The PEG and graphene coating layers are important to accommodating volume expansion of the coated sulfur particles during discharge, trapping soluble polysulfide intermediates, and rendering the sulfur particles electrically conducting. The resulting graphene–sulfur composite showed high and stable specific capacities up to ∼600 mAh/g over more than 100 cycles, representing a promising cathode material for rechargeable lithium batteries with high energy density.
ISSN:1530-6984
1530-6992
DOI:10.1021/nl200658a