Loading…

Mapping the networks for pluripotency

There has been an immense interest in embryonic stem cells owing to their pluripotent property, which refers to the ability to differentiate into all cell types of an embryo. In the maintenance of this pluripotent nature, transcription factors play essential roles, and signalling pathways also act t...

Full description

Saved in:
Bibliographic Details
Published in:Philosophical transactions of the Royal Society of London. Series B. Biological sciences 2011-08, Vol.366 (1575), p.2238-2246
Main Authors: Xue, Kun, Ng, Jia-Hui, Ng, Huck-Hui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:There has been an immense interest in embryonic stem cells owing to their pluripotent property, which refers to the ability to differentiate into all cell types of an embryo. In the maintenance of this pluripotent nature, transcription factors play essential roles, and signalling pathways also act to sustain the undifferentiated state. Recent studies have unravelled multiple forms of interconnection and crosstalk between these two regulatory aspects of pluripotency. With the discovery of epiblast stem cells, there is an emerging concept that different pluripotent states could exist, and knowledge of both transcriptional networks and signalling pathways has been vital in dissecting the properties of these different states. Similar to classical reprogramming methodologies, various combinations of transcription factor transduction and the modulation of intracellular signalling have enabled the interconversion between pluripotent states. These studies provide an insight into the defining characteristics as well as the plasticity of pluripotent cells.
ISSN:0962-8436
1471-2970
DOI:10.1098/rstb.2011.0005