Loading…

Distributed Space-Time Cooperative Schemes for Underwater Acoustic Communications

In resource limited, large scale underwater sensor networks, cooperative communication over multiple hops offers opportunities to save power. Intermediate nodes between source and destination act as cooperative relays. Herein, protocols coupled with space-time block code (STBC) strategies are propos...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of oceanic engineering 2008-10, Vol.33 (4), p.489-501
Main Authors: Vajapeyam, M., Vedantam, S., Mitra, U., Preisig, J.C., Stojanovic, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In resource limited, large scale underwater sensor networks, cooperative communication over multiple hops offers opportunities to save power. Intermediate nodes between source and destination act as cooperative relays. Herein, protocols coupled with space-time block code (STBC) strategies are proposed and analyzed for distributed cooperative communication. Amplify-and-forward-type protocols are considered, in which intermediate relays do not attempt to decode the information. The Alamouti-based cooperative scheme proposed by Hua (2003) for flat-fading channels is generalized to work in the presence of multipath, thus addressing a main characteristic of underwater acoustic channels. A time-reversal distributed space-time block code (TR-DSTBC) is proposed, which extends the dual-antenna TR-STBC (time-reversal space-time block code) approach from Lindskog and Paulraj (2000) to a cooperative communication scenario for signaling in multipath. It is first shown that, just as in the dual-antenna STBC case, TR along with the orthogonality of the DSTBC essentially allows for decoupling of the vector intersymbol interference (ISI) detection problem into separate scalar problems, and thus yields strong performance (compared with single-hop communication) and with substantially reduced complexity over nonorthogonal schemes. Furthermore, a performance analysis of the proposed scheme is carried out to provide insight on the performance gains, which are further confirmed via numerical results based on computer simulations and field data experiments.
ISSN:0364-9059
1558-1691
DOI:10.1109/JOE.2008.2005338