Loading…

Modulation of Macrophage Fatty Acid Content and Composition by Exposure to Dyslipidemic Serum in Vitro

Macrophages in arterial walls accumulate lipids leading to the development of atherosclerotic plaques. However, mechanisms underlying macrophage lipid accumulation and foam cell formation are often studied without accounting for risk factors such as dyslipidemia. We investigated the effect of varyin...

Full description

Saved in:
Bibliographic Details
Published in:Lipids 2011-04, Vol.46 (4), p.371-380
Main Authors: Wong, Bruce X. W., Kyle, Reece A., Croft, Kevin D., Quinn, Carmel M., Jessup, Wendy, Yeap, Bu B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Macrophages in arterial walls accumulate lipids leading to the development of atherosclerotic plaques. However, mechanisms underlying macrophage lipid accumulation and foam cell formation are often studied without accounting for risk factors such as dyslipidemia. We investigated the effect of varying concentrations of triglyceride (TG) within physiological range on macrophage fatty acid (FA) accumulation and expression of cholesterol efflux proteins. Human monocytes were cultured in media supplemented with 10% sera containing low (0.7 mmol/L) to high (1.4 mmol/L) TG. The resulting macrophages were harvested after 10 days for analysis of FA content and composition and expression of genes involved in lipid metabolism. Exposure to higher TG and lower HDL concentrations in media increased macrophage lipid content. Macrophages exposed to higher TG had increased total FA content compared with controls (876 μg/mg protein vs. 652 μg/mg protein) and greater proportions of C16:0, C18:1 and C18:2. Macrophage expression of both ABCA1 and ABCG1 cholesterol efflux proteins were reduced when higher TG concentrations were present in the media. Expression of scavenger receptor CD36, involved in lipoprotein uptake, was also downregulated in macrophages exposed to higher TG. Culturing macrophages in conditions of higher versus lower TG influenced macrophage FA content and composition, and levels of regulatory proteins. Replicating in vitro levels of dyslipidemia encountered in vivo may provide an informative model for investigation of atherogenesis.
ISSN:0024-4201
1558-9307
DOI:10.1007/s11745-011-3528-2