Loading…

Putative neuropeptides and an EF-hand motif region are encoded by a novel gene expressed in the four giant interneurons of the terrestrial snail

Nine giant interneurons located in the pleural and parietal ganglia of the terrestrial snail Helix lucorum L. were reported to be a key element in the network controlling withdrawal behaviour of the animal. Using a combination of complementary DNA subtraction cloning and differential screening appro...

Full description

Saved in:
Bibliographic Details
Published in:Neuroscience 1998-07, Vol.85 (2), p.637-647
Main Authors: Bogdanov, Y.D, Balaban, P.M, Poteryaev, D.A, Zakharov, I.S, Belyavsky, A.V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nine giant interneurons located in the pleural and parietal ganglia of the terrestrial snail Helix lucorum L. were reported to be a key element in the network controlling withdrawal behaviour of the animal. Using a combination of complementary DNA subtraction cloning and differential screening approaches we have isolated a novel gene named HCS2 which is expressed predominantly in a subset of these interneurons. The predicted amino acid sequence of the HCS2 protein contains at the N-terminus a hydrophobic leader sequence and four putative neuropeptides, and at the C-terminus a perfect match to the consensus motif of the EF-hand family of the Ca 2+-binding proteins. All four predicted neuropeptides bear a C-terminal signature sequence Tyr-Pro-Arg-X (where X is Ile, Leu, Val or Pro), and three of them are likely to be amidated. Physiological action of three synthetic peptides corresponding to the predicted mature HCS2 peptides mimics fairly well the described action of parietal interneurons on follower motoneurons controlling pneumostome closure. In situ hybridization experiments demonstrated that the HCS2 gene is selectively expressed in the four parietal giant interneurons, as well as in several small unidentified neurons. The onset of the HCS2 transcription during embryogenesis coincides temporally with the time-point when the first withdrawal responses of the embryo to tactile stimulation appear. We propose that the HCS2 gene encodes a hybrid precursor protein whose processed products act as neuromodulators or neurotransmitters mediating the withdrawal reactions of the snail, and in addition may participate in the calcium regulatory pathways or calcium homeostasis in command neurons.
ISSN:0306-4522
1873-7544
DOI:10.1016/S0306-4522(97)00561-7