Loading…

Reduced ex vivo interleukin-8 production by neutrophils in septic and nonseptic systemic inflammatory response syndrome

Ex vivo cytokine production by circulating lymphocytes and monocytes is reduced in patients with infectious or noninfectious systemic inflammatory response syndrome. Very few studies have addressed the reactivity of polymorphonuclear cells (PMN). To analyze further the relative contribution of syste...

Full description

Saved in:
Bibliographic Details
Published in:Blood 1998-05, Vol.91 (9), p.3439-3446
Main Authors: MARIE, C, MURET, J, FITTING, C, LOSSER, M.-R, PAYEN, D, CAVAILLON, J.-M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ex vivo cytokine production by circulating lymphocytes and monocytes is reduced in patients with infectious or noninfectious systemic inflammatory response syndrome. Very few studies have addressed the reactivity of polymorphonuclear cells (PMN). To analyze further the relative contribution of systemic inflammatory response syndrome alone or in combination with infection we studied the interleukin-8 (IL-8) production by PMN isolated from patients who had undergone cardiac surgery with cardiopulmonary bypass (CPB) and patients with sepsis. Cells were activated with either lipopolysaccharide (LPS) or heat-killed streptococci. Compared with healthy controls, the release of IL-8 by PMN in both groups of patients was significantly reduced whether activated by LPS, independently of its concentration and origin, or by heat-killed streptococci. These observations suggest that stressful conditions related to inflammation, independently of infection, rapidly dampened the reactivity of circulating PMN. We investigated whether the observed diminished reactivity of PMN might reflect an endotoxin tolerance phenomenon. Our in vitro experiments with PMN from healthy controls indicated that PMN could not be rendered tolerant stricto sensu. However, our data suggested that LPS-induced mediators such as IL-10 may be responsible for the observed anergy in patients.
ISSN:0006-4971
1528-0020
DOI:10.1182/blood.V91.9.3439