Loading…

Comparative Analysis of Thaumatin Crystals Grown on Earth and in Microgravity

The protein thaumatin was studied as a model macromolecule for crystallization in microgravity‐environment experiments conducted on two US Space Shuttle missions (USML‐2 and LMS). In this investigation, we have evaluated and compared the quality of space‐ and earth‐grown thaumatin crystals using X‐r...

Full description

Saved in:
Bibliographic Details
Published in:Acta crystallographica. Section D, Biological crystallography. Biological crystallography., 1997-11, Vol.53 (6), p.724-733
Main Authors: Ng, J. D., Lorber, B., Giegé, R., Koszelak, S., Day, J., Greenwood, A., McPherson, A.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The protein thaumatin was studied as a model macromolecule for crystallization in microgravity‐environment experiments conducted on two US Space Shuttle missions (USML‐2 and LMS). In this investigation, we have evaluated and compared the quality of space‐ and earth‐grown thaumatin crystals using X‐ray diffraction analyses, and characterized them according to crystal size, diffraction resolution limit and mosaicity. Two different approaches for growing thaumatin crystals in the microgravity environment, dialysis and liquid–liquid diffusion, were employed as a joint experiment by our two investigative teams. Thaumatin crystals grown in a microgravity environment were generally larger in volume and the total number of crystals was less, relative to crystals grown on earth. They diffracted to significantly higher resolution and with improved diffraction properties, as judged by relative plots of I/σversus resolution. The mosaicity of space‐grown crystals was significantly less than that of crystals grown on earth. Increased concentrations of protein in the crystallization chambers in microgravity led to larger crystals. The data presented here lend further support to the idea that protein crystals of improved quality can be obtained in a microgravity environment.
ISSN:1399-0047
0907-4449
1399-0047
DOI:10.1107/S090744499700694X