Loading…

Lead transport in IEC-6 intestinal epithelial cells

This study evaluated the use of IEC-6 cells as a model for studying lead (Pb) transport by intestinal epithelial cells (IECs) and examined potential transport mechanisms for Pb uptake and extrusion. Pb accumulation in IEC-6 cells exposed to 5 and 10 microM Pb for up to 60 min was time- and dose-depe...

Full description

Saved in:
Bibliographic Details
Published in:Biological trace element research 1997-07, Vol.58 (1-2), p.13-24
Main Authors: Dekaney, C M, Harris, E D, Bratton, G R, Jaeger, L A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study evaluated the use of IEC-6 cells as a model for studying lead (Pb) transport by intestinal epithelial cells (IECs) and examined potential transport mechanisms for Pb uptake and extrusion. Pb accumulation in IEC-6 cells exposed to 5 and 10 microM Pb for up to 60 min was time- and dose-dependent. Reduction of incubation temperature significantly reduced the total cellular Pb content of IEC-6 cells. Simultaneous exposed of cells to zinc (Zn) and Pb resulted in decreased total cellular Pb contents compared to total cellular Pb contents of cells exposed to Pb only. IEC-6 cells treated with ouabain (1 mM) or sodium azide (1 mM) and 5 microM Pb accumulated more Pb than cells exposed to Pb only. Cells treated with p-chloromercuribenzensulfonic acid (50 microM), p-chloromercuribenzoic acid (50 microM), or iodoacetimide (50 microM) accumulated less Pb than cells treated with Pb only. We conclude that Pb uptake by IEC-6 cells depends on the extracellular Pb concentration. Our data suggest that the mechanism of Pb uptake by IECs is complex, and that Pb transport in IEC-6 cells is time- and temperature-dependent, involves sulfhydryl groups, and is decreased by the presence of Zn. Extrusion of Pb is at least partially dependent on metabolic energy.
ISSN:0163-4984
1559-0720
DOI:10.1007/bf02910662