Loading…

Generic mechanism for generating a liquid-liquid phase transition

Recent experimental results indicate that phosphorus-a single-component system-can have a high-density liquid (HDL) and a low-density liquid (LDL) phase. A first-order transition between two liquids of different densities is consistent with experimental data for a variety of materials, including sin...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2001-02, Vol.409 (6821), p.692-695
Main Authors: Skibinsky, Anna, Stanley, H. Eugene, Franzese, Giancarlo, Malescio, Gianpietro, Buldyrev, Sergey V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent experimental results indicate that phosphorus-a single-component system-can have a high-density liquid (HDL) and a low-density liquid (LDL) phase. A first-order transition between two liquids of different densities is consistent with experimental data for a variety of materials, including single-component systems such as water, silica and carbon. Molecular dynamics simulations of very specific models for supercooled water, liquid carbon and supercooled silica predict a LDL-HDL critical point, but a coherent and general interpretation of the LDL-HDL transition is lacking. Here we show that the presence of a LDL and a HDL can be directly related to an interaction potential with an attractive part and two characteristic short-range repulsive distances. This kind of interaction is common to other single-component materials in the liquid state (in particular, liquid metals), and such potentials are often used to describe systems that exhibit a density anomaly. However, our results show that the LDL and HDL phases can occur in systems with no density anomaly. Our results therefore present an experimental challenge to uncover a liquid-liquid transition in systems like liquid metals, regardless of the presence of a density anomaly.
ISSN:0028-0836
1476-4687
DOI:10.1038/35055514