Loading…

First Direct Evidence for Lipid/Protein Conjugation in Oxidized Human Low Density Lipoprotein

It has been postulated that lipids incorporated in atherosclerotic plaques are derived from the uptake of oxidized low density lipoprotein (LDL) by a macrophage-bound receptor. In vitro studies of LDL oxidation have established that reactive lipids are formed and that the exposure of native LDL to t...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1996-11, Vol.271 (45), p.27999-28001
Main Authors: Bolgar, Mark S., Yang, Chao-Yuh, Gaskell, Simon J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It has been postulated that lipids incorporated in atherosclerotic plaques are derived from the uptake of oxidized low density lipoprotein (LDL) by a macrophage-bound receptor. In vitro studies of LDL oxidation have established that reactive lipids are formed and that the exposure of native LDL to these products leads to modified protein with physical properties similar to oxidized LDL. Here we describe the application of highly specific tandem mass spectrometric techniques to the first characterization of lipid-modified LDL by demonstrating the addition of 4-hydroxy-2-nonenal to histidine residues of apolipoprotein B-100, following oxidation of LDL. The modified residues have been assigned to specific locations that have been previously shown to reside on the surface of the LDL particle.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.271.45.27999