Loading…
Isolation and characterization of 3-hydroxyacyl coenzyme A dehydrogenase-binding protein from pig heart inner mitochondrial membrane
3-Hydroxyacyl coenzyme A (CoA) dehydrogenase-binding protein was solubilized from inner mitochondrial membrane by using taurodeoxycholate at high ionic strength. The binding protein was isolated from the suspension using 3-hydroxyacyl-CoA dehydrogenase affinity chromatography. The protein eluted fro...
Saved in:
Published in: | The Journal of biological chemistry 1986-10, Vol.261 (30), p.14209-14213 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | 3-Hydroxyacyl coenzyme A (CoA) dehydrogenase-binding protein was solubilized from inner mitochondrial membrane by using taurodeoxycholate at high ionic strength. The binding protein was isolated from the suspension using 3-hydroxyacyl-CoA dehydrogenase affinity chromatography. The protein eluted from the affinity column had a molecular weight of approximately 150,000, as determined by gel filtration. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the protein is a dimer consisting of 69,000 and 71,000 molecular weight subunits. The enzyme binding capacity of this protein was tested with a polyethylene glycol precipitation method: 0.5 mg of enzyme could be precipitated together with 1 mg of binding protein, showing that 1 mol of binding protein binds 1 mol of enzyme. This protein had no affinity toward malic dehydrogenase, citrate synthase, and fumarase. The approximately 2-fold increase in the 3-hydroxyacyl-CoA dehydrogenase activity when it was measured in the presence of the binding protein is additional evidence of enzyme-binding protein interaction. When incorporated into liposomes, the binding protein retained its ability to bind 3-hydroxyacyl-CoA dehydrogenase, but did not bind malic dehydrogenase, citrate synthase, and fumarase. These results suggest that the protein isolated by us has a specific function in anchoring a beta-oxidation enzyme to the matrix surface of the mitochondrial membrane. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1016/S0021-9258(18)67005-X |