Loading…

Antitumor activity of N1,N11-bis(ethyl)norspermine against human melanoma xenografts and possible biochemical correlates of drug action

In in vitro systems, the spermine analogue, N1,N11-bis(ethyl)norspermine (BENSPM), suppresses the polyamine biosynthetic enzymes, ornithine and S-adenosylmethionine decarboxylase (ornithine decarboxylase and S-adenosylmethionine decarboxylase, respectively), greatly induces the polyamine catabolic e...

Full description

Saved in:
Bibliographic Details
Published in:Cancer research (Chicago, Ill.) Ill.), 1993-02, Vol.53 (3), p.581-586
Main Authors: PORTER, C. W, BERNACKI, R. J, MILLER, J, BERGERON, R. J
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In in vitro systems, the spermine analogue, N1,N11-bis(ethyl)norspermine (BENSPM), suppresses the polyamine biosynthetic enzymes, ornithine and S-adenosylmethionine decarboxylase (ornithine decarboxylase and S-adenosylmethionine decarboxylase, respectively), greatly induces the polyamine catabolic enzyme, spermidine/spermine N1-acetyltransferase (SSAT), depletes polyamine pools, and inhibits cell growth. Against MALME-3 M human melanoma xenografts, BENSPM and related homologues demonstrate potent antitumor activity that has been found to correlate positively with their ability to induce SSAT activity in vitro. Herein, we further evaluate the antitumor activity of BENSPM and at the same time characterize the biochemical effects of BENSPM treatment on polyamine metabolism of selected normal and tumor tissues. At 40 mg/kg 3 times/day for 6 days i.p., BENSPM suppressed growth of MALME-3 M human melanoma xenografts during treatment and for 65 days afterwards. Similar antitumor activity was obtained with 120 mg/kg once daily for 6 days and 40 mg/kg once daily for 6 days, indicating that against this tumor model, the dosing schedule can be relaxed up to sixfold without compromising antitumor activity. When MALME-3 M tumor-bearing mice were retreated with BENSPM 2 weeks after the first treatment at 40 mg/kg 3 times/day for 6 days, initial tumor volumes of 85 mm3 were reduced to < 10 mm3. Analysis of melanoma, liver, and kidney tissues from mice treated with 40 mg/kg 3 times/day for 6 days revealed relatively similar accumulations of BENSPM in all tissues at levels greater than the original total content of polyamine pools. By 2 weeks following treatment, BENSPM pools in normal tissues were almost gone, whereas in tumor tissues significant amounts (40%) were still retained. The biosynthetic enzymes, ornithine decarboxylase and S-adenosylmethionine decarboxylase, gave no indication of enzyme suppression (or increase) by the analogue as typically occurs in vitro. By contrast, SSAT was induced from an average of < 50 pmol/min/mg in control tissues to 320 pmol/min/mg in liver, 1255 pmol/min/mg in kidney, and 13,710 pmol/min/mg in MALME-3M tumor. Two weeks later, SSAT activity was still 12 times higher in tumor than in kidney. Polyamine pools (putrescine, spermidine, and spermine) were reduced after treatment in all tissues and approached near-total depletion in the tumor. Good antitumor activity and even more potent induction of SSAT (i.e., 26,680 pmol/min/mg) was also
ISSN:0008-5472
1538-7445