Loading…

Development and validation of a kinetic assay for analysis of anti-human interleukin-5 monoclonal antibody (SCH 55700) and human interleukin-5 interactions using surface plasmon resonance

A method to assess the kinetic interactions of a humanized anti-human interleukin-5 (IL-5) monoclonal antibody (SCH 55700) with native human IL-5 using surface plasmon resonance (SPR) has been developed and validated. Since there are no clearly defined validation requirements for a SPR-based binding...

Full description

Saved in:
Bibliographic Details
Published in:Analytical biochemistry 2004-04, Vol.327 (2), p.165-175
Main Authors: DiGiacomo, Ruth A., Xie, Lei, Cullen, Constance, Indelicato, Stephen R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A method to assess the kinetic interactions of a humanized anti-human interleukin-5 (IL-5) monoclonal antibody (SCH 55700) with native human IL-5 using surface plasmon resonance (SPR) has been developed and validated. Since there are no clearly defined validation requirements for a SPR-based binding kinetic assay, the validation strategy was based on the guidelines stipulated by the International Conference on Harmonization for Analytical Method Validation. Due to the uniqueness of the method, however, proper interpretation of the guidance was critical for establishing a validation plan. Validation was designed to assess repeatability, intermediate precision, specificity, linearity, and robustness which included analysis of baseline stability and reproducibility of ligand immobilization. Additionally, system suitability criteria were established to assure that the assay consistently performs as it was intended. The experimental artifacts that can complicate kinetic analysis using biosensor technology, such as heterogeneity of the ligand, mass transport, and nonspecific binding, were considered during the development of this assay. For each run, replicate concentrations of SCH 55700 were injected randomly over the immobilized surfaces to acquire association- and dissociation-phase data. The data were transformed and double referenced to remove systematic deviations seen in the binding responses. Association and dissociation rates were determined using a bivalent analyte model for curve fitting.
ISSN:0003-2697
1096-0309
DOI:10.1016/j.ab.2004.01.006