Loading…

Loss Estimate for ITER ECH Transmission Line Including Multimode Propagation

The ITER electron cyclotron heating (ECH) transmission lines (TLs) are 63.5-mm-diam corrugated waveguides that will each carry 1 MW of power at 170 GHz. The TL is defined here as the corrugated waveguide system connecting the gyrotron mirror optics unit (MOU) to the entrance of the ECH launcher and...

Full description

Saved in:
Bibliographic Details
Published in:Fusion science and technology 2010-04, Vol.57 (3), p.196-207
Main Authors: Shapiro, M. A., Kowalski, E. J., Sirigiri, J. R., Tax, D. S., Temkin, R. J., Bigelow, T. S., Caughman, J. B., Rasmussen, D. A.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The ITER electron cyclotron heating (ECH) transmission lines (TLs) are 63.5-mm-diam corrugated waveguides that will each carry 1 MW of power at 170 GHz. The TL is defined here as the corrugated waveguide system connecting the gyrotron mirror optics unit (MOU) to the entrance of the ECH launcher and includes miter bends and other corrugated waveguide components. The losses on the ITER TL have been calculated for four possible cases corresponding to having HE 11 mode purity at the input of the TL of 100, 97, 90, and 80%. The losses due to coupling, ohmic, and mode conversion loss are evaluated in detail using a numerical code and analytical approaches. Estimates of the calorimetric loss on the line show that the output power is reduced by about 5, ±1% because of ohmic loss in each of the four cases. Estimates of the mode conversion loss show that the fraction of output power in the HE 11 mode is ~3% smaller than the fraction of input power in the HE 11 mode. High output mode purity therefore can be achieved only with significantly higher input mode purity. Combining both ohmic and mode conversion loss, the efficiency of the TL from the gyrotron MOU to the ECH launcher can be roughly estimated in theory as 92% times the fraction of input power in the HE 11 mode.
ISSN:1536-1055
1943-7641
DOI:10.13182/FST10-A9467