Loading…

Scanning Single-Electron Transistor Microscopy: Imaging Individual Charges

A single-electron transistor scanning electrometer (SETSE)-a scanned probe microscope capable of mapping static electric fields and charges with 100-nanometer spatial resolution and a charge sensitivity of a small fraction of an electron-has been developed. The active sensing element of the SETSE, a...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 1997-04, Vol.276 (5312), p.579-582
Main Authors: Yoo, M. J., Fulton, T. A., Hess, H. F., Willett, R. L., Dunkleberger, L. N., Chichester, R. J., Pfeiffer, L. N., West, K. W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A single-electron transistor scanning electrometer (SETSE)-a scanned probe microscope capable of mapping static electric fields and charges with 100-nanometer spatial resolution and a charge sensitivity of a small fraction of an electron-has been developed. The active sensing element of the SETSE, a single-electron transistor fabricated at the end of a sharp glass tip, is scanned in close proximity across the sample surface. Images of the surface electric fields of a GaAs/Al$_x$Ga$_{1-x}$ As heterostructure sample show individual photo-ionized charge sites and fluctuations in the dopant and surface-charge distribution on a length scale of 100 nanometers. The SETSE has been used to image and measure depleted regions, local capacitance, band bending, and contact potentials at submicrometer length scales on the surface of this semiconductor sample.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.276.5312.579