Loading…

A sampling approach to estimate the log determinant used in spatial likelihood problems

Likelihood-based methods for modeling multivariate Gaussian spatial data have desirable statistical characteristics, but the practicality of these methods for massive georeferenced data sets is often questioned. A sampling algorithm is proposed that exploits a relationship involving log-pivots arisi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geographical systems 2009-09, Vol.11 (3), p.209-225
Main Authors: Pace, R. Kelley, LeSage, James P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Likelihood-based methods for modeling multivariate Gaussian spatial data have desirable statistical characteristics, but the practicality of these methods for massive georeferenced data sets is often questioned. A sampling algorithm is proposed that exploits a relationship involving log-pivots arising from matrix decompositions used to compute the log determinant term that appears in the model likelihood. We demonstrate that the method can be used to successfully estimate log-determinants for large numbers of observations. Specifically, we produce an log-determinant estimate for a 3,954,400 by 3,954,400 matrix in less than two minutes on a desktop computer. The proposed method involves computations that are independent, making it amenable to out-of-core computation as well as to coarse-grained parallel or distributed processing. The proposed technique yields an estimated log-determinant and associated confidence interval.
ISSN:1435-5930
1435-5949
DOI:10.1007/s10109-009-0087-7