Loading…

Influence of phytase addition to poultry diets on phosphorus forms and solubility in litters and amended soils

Diet modification to decrease phosphorus (P) concentration in animal feeds and manures can reduce surpluses of manure P in areas of intensive animal production. We generated turkey and broiler litters from two and three flock trials, respectively, using diets that ranged from "high" to &qu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of environmental quality 2004-11, Vol.33 (6), p.2306-2316
Main Authors: Maguire, R.O, Sims, J.T, Saylor, W.W, Turner, B.L, Angel, R, Applegate, T.J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Diet modification to decrease phosphorus (P) concentration in animal feeds and manures can reduce surpluses of manure P in areas of intensive animal production. We generated turkey and broiler litters from two and three flock trials, respectively, using diets that ranged from "high" to "low" in non-phytate phosphorus (NPP) and some of which contained feed additives such as phytase. Phosphorus forms in selected litters were analyzed by sequential chemical fractionation and solution 31P nuclear magnetic resonance (NMR) spectroscopy. Selected litters were also incubated with four contrasting soils. Reducing dietary NPP and using phytase decreased total P in litters by up to 38%. Water-soluble phosphorus (WSP) in litters was decreased 21 to 44% by feeding NPP closer to animal requirement, but was not affected by phytase addition. Solution 31P NMR spectroscopy showed that feeding NPP closer to requirement decreased orthophosphate in litters by an average of 38% and that adding phytase to feed did not increase the concentration of orthophosphate in litters. Phytase also decreased phytate P in litters by 25 to 38%, demonstrating that it increases phytate P hydrolysis. Incorporation of litters with soils at the same total P rate increased WSP in soils relative to the control; this increase was correlated to soluble P added with litters at 5 d, but not by 29 d. Changes in soil Mehlich-3 phosphorus (M3-P) were related to total P added in litter, rather than soluble P. We conclude that feeding NPP closer to requirement and using feed additives such as phytase decrease total P concentrations in litters, while having little effect on P solubility in litters and amended soils.
ISSN:0047-2425
1537-2537
DOI:10.2134/jeq2004.2306