Loading…

Effects of Multiple Scattering on Attenuation-Based Retrievals of Stratiform Rainfall from CloudSat

An attenuation-based method to retrieve vertical profiles of rainfall rates from height derivatives/gradients of CloudSat nadir-pointing W-band reflectivity measurements is discussed. This method takes advantage of the high attenuation of W-band frequency signals in rain and the low variability of n...

Full description

Saved in:
Bibliographic Details
Published in:Journal of atmospheric and oceanic technology 2008-12, Vol.25 (12), p.2199-2208
Main Authors: Matrosov, Sergey Y, Battaglia, Alessandro, Rodriguez, Peter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An attenuation-based method to retrieve vertical profiles of rainfall rates from height derivatives/gradients of CloudSat nadir-pointing W-band reflectivity measurements is discussed. This method takes advantage of the high attenuation of W-band frequency signals in rain and the low variability of nonattenuated reflectivity due to strong non-Rayleigh scattering from rain drops. The retrieval uncertainties could reach 40%-50%. The suggested method is generally applicable to rainfall rates (R) in an approximate range from about 2-3 to about 20-25 mm hsup -1. Multiple scattering noticeably affects the gradients of CloudSat measurements for R values greater than about 5 mm hsup -1. To avoid a retrieval bias caused by multiple-scattering effects, a special correction for retrievals is introduced. For rainfall rates greater than about 25 mm hsup -1, the influence of multiple scattering gets overwhelming, and the retrievals become problematic, especially for rainfalls with higher freezing-level altitudes. The attenuation-based retrieval method was applied to experimental data from CloudSat covering the range of rainfall rates. CloudSat retrievals were compared to the rainfall estimates available from a National Weather Service ground-based scanning precipitation radar operating at S band. Comparisons between spaceborne and conventional radar rainfall retrievals were generally in good agreement and indicated the mutual consistency of both quantitative precipitation estimate types. The suggested CloudSat rainfall retrieval method is immune to the absolute calibration of the radar and to attenuation caused by the melting layer and snow regions. Since it does not require surface returns, it is applicable to measurements above both land and water surfaces. [PUBLICATION ABSTRACT]
ISSN:0739-0572
1520-0426
DOI:10.1175/2008jtecha1095.1