Loading…

Identification, functional expression and chromosomal localisation of a sustained human proton-gated cation channel

Non-inactivating or slowly inactivating proton-gated cation channels are thought to play an important role in the perception of pain that accompanies tissue acidosis. We have identified a novel human proton-gated cation channel subunit that has biphasic desensitisation kinetics with both a rapidly i...

Full description

Saved in:
Bibliographic Details
Published in:FEBS letters 1998-08, Vol.433 (3), p.257-260
Main Authors: de Weille, Jan R., Bassilana, Frédéric, Lazdunski, Michel, Waldmann, Rainer
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Non-inactivating or slowly inactivating proton-gated cation channels are thought to play an important role in the perception of pain that accompanies tissue acidosis. We have identified a novel human proton-gated cation channel subunit that has biphasic desensitisation kinetics with both a rapidly inactivating Na +-selective and a sustained component. The protein shares 84% sequence identity with the proton-gated cation channel rASIC3 (rDRASIC) from rat sensory neurones. The biphasic desensitisation kinetics and the sequence homology suggest that this novel clone (hASIC3) is the human orthologue of rASIC3 (rDRASIC). While rASIC3 (rDRASIC) requires very acidic pH (pH < 4.5) for activation of the sustained current, the non-inactivating hASIC3 current starts to be activated when the pH decreases to below pH 6. hASIC3 is an acid sensor and might play an important role in the detection of lasting pH changes in human. We localised the hASIC3 gene to the human chromosome 7q35, 6.4 cRad telomeric from the microsatellite AFMA082XC9.
ISSN:0014-5793
1873-3468
DOI:10.1016/S0014-5793(98)00916-8